, Volume 7, Issue 2, pp 131–138 | Cite as

Application of Ion Exchange Techniques to Industrial Process of Metal Ions Removal From Wine

  • V.M. Palacios
  • I. Caro
  • L. Pérez


In this article, the application of selective ion exchange resins to the industrial metals removal of wine has been studied as an alternative to the "blue clarification" technique. In this sense, under the perspective of using this technology in the metals removal of sherry wines, a set of experiments at laboratory and pilot plant scale have been carried out. The study shows the behavior of several alkaline ions, metal ions and other parameters (pH, colour, protein index, etc.) during the process. Moreover, using the general theoretical model for continuous multistage processes, this study contemplates also the engineering design and the economic balance of the industrial process based on ion exchange columns. The experimental results demonstrates that ion exchange techniques are more effective and economic than "blue clarification" for metals removal of sherry wines. The proposed practice does not produce alterations in the qualities of the products; it achieves stability enough and also permits an important decrease of the contents of heavy metals.

ion exchange metal removal iminodiacetic resin wine oxidative stabilisation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bayer, A.G., "Selective Ion Exchange Resins. Properties and Application," Technical Information, p. 12, Bayer AG, Stuggart, 1997.Google Scholar
  2. Bensadoun, A. and D. Weinstein, "Protein Index Analyses by Lowry Reagent Modified," Anal. Biochem., 70, 241 (1976).Google Scholar
  3. Caputi, A., J.R. Ueda, and M. Ueda, "The Determination of Copper and Iron inWine by Atomic Absorption Spectrophotometry," Am. J. Enol. Vitic., 18, 66–70 (1967).Google Scholar
  4. De la Torre, C., "Les Contaminants du Vin, Aspects Toxicologiques et de Sécurité Alimentaire," Analusis, 25, 21–26 (1997).Google Scholar
  5. Desseigne, J.M., "Le Plomb dans les Vins: Origins et Réductions," Institut Technique de la Vigne et du Vin, O.I.V. Paris, 1993.Google Scholar
  6. Díaz-Yubero, F., "Empleo de Resinas de Intercambio Iónico en Enología," La Sevi., 1921–1947 (1993).Google Scholar
  7. Gennaro, M.C., C. Baiocchi, E. Campi, E. Mentasti, and R. Aruga, "Preparation and Characterization of Iminodiacetic Acid-Cellulose Filter for Concentration of Trace Metal Cation," Anal. Chim. Rec., 151, 339–347 (1983).Google Scholar
  8. Gennaro, M.C., E. Mentasti, C. Sarzanini, and C. Baionchi, "Determination of Traces of Lead and Copper after Preconcentration on Iminodiacetic Acid-Cellulose Filters an Approach to Lead and Copper Speciation," Anal. Chim. Rec., 174, 259–268 (1985).Google Scholar
  9. Hudson, M.J., "Coordination Chemistry of Selective-Ion Exchange Resins," in Ion Exchange: Science and Technology, NATO ASI Series, A.E. Rodrigues (Ed.), pp. 35–66, 1986.Google Scholar
  10. Kern, M.J. and K. Wucherpfennig, "Factors Influencing the Removal of Heavy Metals from Wine with a Selective Chelating Agent," Vitic. Enol. Sci., 48, 39–44 (1993).Google Scholar
  11. Martínez P., L. Pérez, and T. Benítez, "Evolution of Flor Yeast Isolated from Sherry Wine," Am. J. Enol. Vitic., 48, 1–9 (1997).Google Scholar
  12. Martínez, P., M. Valcárcel, P. González, T. Benítez, and L. Pérez, "Consumo de Etanol, Glicerina, y Aminoácidos Totales en Vinos Finos durante la Crianza Biológica," Alim. Equip. Tecnol., 3, 61–65 (1993).Google Scholar
  13. Minguez, S., P. Hernández, and M. Gonzalo, "Selective Extraction of Lead from Wine with Ionic Exchange Resins," in 5th Symp. Int. Oenol., A. Lonvaud-Funel (Ed.), p. 632, Tec & Doc Lavoisier, Paris, 1996.Google Scholar
  14. Minhua, F., S. Mei, S. Janney, J. Carruthers, B. Holbein, A. Huber, and D. Kikby, "Selective Removal of Iron from Grape Juice Using an Iron (III) Chelating Resin," Separation and Purification Technology, 11, 127–135 (1997).Google Scholar
  15. Naden, D. and G. Willey, Reduction in Copper Recovery Cost Using Solid Ion Exchange, Society of Chemical Industry, London, 1976.Google Scholar
  16. Navrotsky, V.I. and S.P. Avakiants, "La Theorie du Viellissement du Vin," in IV Congress of Wine, Tradition, Economy and Health, O.I.V., pp. 389–392, Varna, Bulgaria, 1986.Google Scholar
  17. O.I.V., "Recueil des Methodes Internationales d'Analyses des Vins," O.I.V., París, 1973.Google Scholar
  18. Ribereau-Gayon, P., Y. Glorie, A. Maujean, and D. Dubourdieu, Traité d'OEnologie II. Chimie du Vin, Stabilisation et Traitements, pp. 451–459, Dunod, Paris, 1998.Google Scholar
  19. Sánchez-Pineda, M.T. and E. Martín-López, "Metales Pesados en el Vino: Alternativas al Tratamiento con Hexacianoferrato (II) de Potasio," Alim. Equip. Tecnol., 4, 111–115 (1997).Google Scholar
  20. Scollary, G.R., "Metals in Wine: Contamination, Spoilage and Toxicity," Analysis, 25, 26–30 (1997).Google Scholar
  21. Spiess, B., E. Harraka, D. Wenker, and P. Laugel "Approche Teorique de la Répartition du Fer (III), du Plomb et du Cadmium dans un Vin et leur Précipitation par l'Hexacyanoferrato (II)," Analusis, 12, 289–297 (1984).Google Scholar
  22. Terry-Muñoz, J.C., "Contribución al Estudio de los Compuestos Polifenólicos en Vinos de la Denominación de Origen Jerez," pp. 48-50, Thesis, Servicio de Publicaciones de la Universidad de Sevilla, Sevilla, 1973.Google Scholar
  23. Weast, R.C., Handbook of Chemistry and Physics, pp. F198–F199, CRC Press Inc., Cleveland, 1974.Google Scholar
  24. Willians, P.A. and M.J. Hudron, Recent Development in Ion Exchange, pp. 265–270, Eselvier Applied Sciencie, New York, 1991.Google Scholar
  25. Würdig, G. and R. Woller, Chemie des Weines, pp. 135–140, Werlag Eugen Ulmer, Stuttgart, 1989.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • V.M. Palacios
    • 1
  • I. Caro
    • 1
  • L. Pérez
    • 1
  1. 1.Department of Chemical Engineering, Food Technology and Environmental TechnologiesFaculty of SciencesPuerto Real, CádizSpain

Personalised recommendations