Effect of a Localized Random Forcing Term on the Korteweg-De Vries Equation

  • Arnaud Debussche
  • Jacques Printems


In this work, we numerically investigate the influence of a white noise-type forcing on the phenomenon of forced generation of solitons by a localized moving disturbance. Our numerical method is based on finite elements and least-squares. We present numerical experiments for different values of noise amplitude and Froude number, which describe some damping effects on the emission of solitons.

Korteweg-de Vries equation solitons least squares finite element method random waves water waves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. R. Akylas, On the excitation of long nonlinear water waves by a moving pressuredistribution, J. Fluid. Mech. 141, 455–466 (1984).Google Scholar
  2. 2.
    J. L. Bona and B.-Y. Zhang, The initial valueproblem for the forced Korteweg–de Vries equation, Proc. Roy. Soc. Edinburgh 126A, 571–598 (1996).Google Scholar
  3. 3.
    G. F. Carey and Y. Shen, Approximations of the KdV equation by least squares finite elements, Comput.Methods Appl. Mech. Engrg. 93, 1–11 (1991).Google Scholar
  4. 4.
    H. Y. Chang, Ch. Lien, S. Sukarto, S. Raychaudhury, J. Hill, E. K. Tsikis, and K. E. Lonngren, Propagation of ion-acoustic solitons in a non-quiescent plasma, Plasma Phys. Controlled Fusion 28, 675–681 (1986).Google Scholar
  5. 5.
    S. L. Cole, Transcient waves produced by flow pasta bump, Wave motion 7, 579–587 (1985).Google Scholar
  6. 6.
    A. Debussche and A. de Bouard, On the stochasticKorteweg–de Vries equation, J. Funct. Anal. 154, 215–251 (1998).Google Scholar
  7. 7.
    A. Debussche, A. de Bouard, and Y. Tsutsumi, White noise driven stochastic Korteweg–de Vries equation, J. Funct. Anal. 169, 532–558 (1999).Google Scholar
  8. 8.
    A. Debussche and J. Printems, Numerical simulation of the stochastic Korteweg–de Vries equation,Physica D 134(2), 200–226 (1999).Google Scholar
  9. 9.
    R. Grimshaw, Resonant flow of a rotating fluid past anobstacle: the general case, Stud. Appl. Math. 83, 249–269 (1990).Google Scholar
  10. 10.
    R. Grimshaw, Resonantforcing of barotropic coastally trapped waves, J. Phys. Ocean. 17, 53–65 (1987).Google Scholar
  11. 11.
    R. Grimshaw, E. Pelinovsky, and X. Tian, Interaction of a solitary wave with an external force, Physica D 77, 405–433 (1994).Google Scholar
  12. 12.
    R. Grimshaw and N. Smyth, Resonant flow of a stratified fluid over topography, J. Fluid Mech.169, 429–464 (1986).Google Scholar
  13. 13.
    R. Grimshaw and Z. Yi, Resonant generation of finite-amplitude waves byflow past topography on a beta-plane, Stud. Appl. Math. 88, 89–112 (1993).Google Scholar
  14. 14.
    R. Herman, Thestochastic, damped Korteweg–de Vries equation, J. Phys. A: Math. Gen. 23, 1063–1084 (1990).Google Scholar
  15. 15.
    V.V. Konotop and L. Vasquez, Nonlinear Random Waves, World Scientific, Singapore, 1994.Google Scholar
  16. 16.
    S.-J. Lee, G. T. Yates, and T. Y. Wu, Experiments and analyses of upstream-advancing solitary waves generated by moving disturbances, J. Fluid. Mech. 199, 569–593 (1989).Google Scholar
  17. 17.
    W. K. Melville and K. R. Helfrich,Transcritical two-layer flow over topography, J. Fluid Mech. 178, 31–52 (1987).Google Scholar
  18. 18.
    H. Mitsuderaand R. Grimshaw, Generation of mesoscale variability by resonant interaction between a baroclinic current and localized topography, J. Phys. Ocean. 21, 737–765 (1991).Google Scholar
  19. 19.
    A. Patoine and T. Warn, Theinteraction of long, quasi-stationary baroclinic waves with topography, J. Atmos. Sci. 39, 1018–1025 (1982).Google Scholar
  20. 20.
    J. Printems, The stochastic Korteweg–de Vries equation in L 2(ℝ), J. Diff. Equations 153,338–373 (1999).Google Scholar
  21. 21.
    M. Scalerandi, A. Romano, and C. A. Condat, Korteweg–de Vries solitons underadditive stochastic perturbations, Phys. Rev. E 58, 4166–4173 (1998).Google Scholar
  22. 22.
    M. Wadati, StochasticKorteweg–de Vries equation, J. Phys. Soc. Jpn 52, 2642–2648 (1983).Google Scholar
  23. 23.
    T. Warn and B. Brasnett,The amplification and capture of atmospheric solitons by topography: a theory of the onset of regional blocking, J. Atmos. Sci. 40, 28–38 (1983).Google Scholar
  24. 24.
    G. B. Whitham, Linear and Nonlinear Waves (Pure and AppliedMathematics), Wiley Interscience, New York, 1974.Google Scholar
  25. 25.
    T. Y. Wu, Generation of upstream advancingsolitons by moving disturbances, J. Fluid Mech. 184, 75–99 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Arnaud Debussche
    • 1
  • Jacques Printems
    • 2
  1. 1.Laboratorie d'Analyse Numérique et EDP d'OrsayUniversité Paris-Sud et CNRSOrsay CedexFrance
  2. 2.Laboratorie d'Analyse, Géométrie et Applications, Institut GaliléeUniversité Paris-NordVilletaneuseFrance

Personalised recommendations