Skip to main content
Log in

A survey of equid mitochondrial DNA: Implications for the evolution, genetic diversity and conservation of Equus

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The evolution, taxonomy and conservation of the genus Equuswere investigated by examining the mitochondrial DNA sequences of thecontrol region and 12S rRNA gene. The phylogenetic analysis of thesesequences provides further evidence that the deepest node in thephylogeny of the extant species is a divergence between twolineages; one leading to the ancestor of modern horses (E.ferus, domestic and przewalskii) and the other to thezebra and ass ancestor, with the later speciation events of the zebrasand asses occurring either as one or more rapid radiations, or withextensive secondary contact after speciation. Examination of the geneticdiversity within species suggested that two of the E. hemionussubspecies (E. h. onager and E. h. kulan) onlyrecently diverged, and perhaps, are insufficiently different to beclassified as separate subspecies. The genetic divergence betweendomestic and wild forms of E. ferus (horse) and E.africanus (African ass) was no greater than expected within anequid species. In E. burchelli (plains zebra) there was anindication of mtDNA divergence between populations increasing withdistance. The implications of these results for equid conservation arediscussed and recommendations are made for conservation action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azzaroli A (1990) The genus Equus in Europe. In: Nato Advanced Workshop: European Neogene Mammal Chronology (eds. Lindsay EH, Fahlbusch V, Mein P), pp. 339-356. Plenum Press, New York.

    Google Scholar 

  • Azzaroli A (1992) Ascent and decline of monodactyl equids: a case for prehistoric overkill. Ann. Zool. Fennici., 28, 151-163.

    Google Scholar 

  • Benirschke K, Malouf N, Low R, Heck H (1965) Chromosome complement differences between Equus caballus and Equus przewalskii, Poliakoff. Science, 148, 382.

    Google Scholar 

  • Bennet DK (1980) Stripes do not a zebra make, Part 1: a cladistic analysis of Equus. Syst. Zool., 29, 272-287.

    Google Scholar 

  • Bouman I, Bouman J (1994) The history of Przewalski' Horse. In: Przewalski' Horse: the History and Biology of an Endangered Species (eds. Boyd L, Houpt KA), pp. 5-38. State University of New York Press, Albany.

    Google Scholar 

  • Britton-Davidian J, Catalan J, da Graça Ramalhinho M, Ganem G, Auffray J-C, Capela R, Biscoito M, Searle JB, da Luz Mathias M (2000) Rapid chromosomal evolution in island mice. Nature, 403, 158.

    Google Scholar 

  • Clegg JB (1974) Horse hemoglobin polymorphism. Ann. N.Y. Acad. Sci., 241, 61-69.

    Google Scholar 

  • Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. TREE, 15, 290-295.

    Google Scholar 

  • Duncan P (1992) ed. Zebras, Asses and Horses: an Action Plan for the Conservation of Wild Equids. IUCN/SSC Equid specialist group, Gland, Switzerland.

    Google Scholar 

  • Eisenmann V (1979) Caractè res évolutifs et phylogénie du genre Equus (Mammalia, Perissodactyla). C.R. Acad. Sc. Paris., 288, 497-500.

    Google Scholar 

  • Eisenmann V (1992) Origins, dispersals, and migrations of Equus (Mammalia, Perissodactyla). Courier Forsch.-Inst. Senckenberg., 153, 161-170.

    Google Scholar 

  • Eisenmann V, Shah N (1996) Some craniological observations on the Iranian, Transcaspian, Mongolian and Indian hemiones. In: EEP Yearbook 1995/96 (eds. Rietkerk F, Brouwer K, Smits S), pp. 396-399. EAZA Executive Office, Amsterdam.

    Google Scholar 

  • Felsenstein J (1993) PHYLIP. Phylogeny Inference Package. Version 3.572c. University of Washington, Seattle, WA.

    Google Scholar 

  • Forstén A (1988) Middle Pleistocene replacement of Stenoid horses by Caballoid horses-ecological implications. Palaeogeogr. Palaeoclimatol. Palaeoecol., 65, 23-33.

    Google Scholar 

  • Forstén A (1992) Mitochondrial-DNA time-table and the evolution of Equus: comparison of molecular and paleontological evidence. Ann. Zool. Fennici., 28, 301-309.

    Google Scholar 

  • George M, Ryder OA (1986) Mitochondrial DNA evolution in the genus Equus. Mol. Biol. Evol., 3, 535-546.

    Google Scholar 

  • Girman DJ, Kat PW, Mills MG, Ginsberg JR, Borner M, Wilson V, Fanshawe JH, Fitzgibbon C, Lau LM, Wayne RK (1993) Molecular genetic and morphological analyses of the African wild dog (Lycaon pictus). J. Hered., 84, 450-459.

    Google Scholar 

  • Groves CP, Mazák V (1967) On some taxonomic problems of Asiatic wild asses; with the description of a new subspecies (Perissodactyla; Equidae). Z. Saugetierkunde., 32, 321-355.

    Google Scholar 

  • Groves CP (1995) On the nomenclature of domestic animals. Bulletin of Zoological Nomenclature., 52, 137-141.

    Google Scholar 

  • Harris AH, Porter LS (1980) Late Pleistocene horses of Dry Cave, Eddy County, New Mexico. J. Mamm., 61, 46-65.

    Google Scholar 

  • Hickson RE, Simon C, Cooper A, Spicer GS, Sullivan J, Penny D (1996) Conserved sequence motifs, alignment and secondary structure for the third domain of animal 12S rRNA. Mol. Biol. Evol., 13, 150-169.

    Google Scholar 

  • Ishida N, Oyunsuren T, Mashima S, Mukoyama H, Saitou N (1995) Mitochondrial DNA sequences of various species of the genus Equus with special reference to the phylogenetic relationship between Przewalski' wild horse and domestic horse. J. Mol. Evol., 41, 180-188.

    Google Scholar 

  • Kaminski M (1979) The biochemical evolution of the horse. Comp. Biochem. Physiol., 63B, 175-178.

    Google Scholar 

  • Kingswood SC, Kumamoto AT, Charter SJ, Jones ML (1998) Cryptic chromosomal variation in suni Neotragus moschatus (Artiodactyla, Bovidae). Anim. Cons., 1, 95-100.

    Google Scholar 

  • Klein RG, Cruz-Uribe K (1999) Craniometry of the genus Equus and the taxonomic affinities of the extinct South African quagga. S. Afr. J. Sci., 95, 81-86.

    Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson WC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA., 86, 6196-6200.

    Google Scholar 

  • Kumar S, Tamura K, Nei M (1993) MEGA: Molecular evolutionary genetic analysis. Version 1.01. The Pennsylvania State University, University Park, PA.

    Google Scholar 

  • LaRue MD (1996) North American Regional Studbook of the African and Asiatic Wild Asses. Topeka Zoological Park, Topeka, Kansas.

    Google Scholar 

  • Lowenstein JM, Ryder OA (1985) Immunological systematics of the extinct quagga (Equidae). Experientia., 41, 1192-1193.

    Google Scholar 

  • MacFadden BJ, Hulbert RC (1988) Explosive speciation at the base of the adaptive radiation of Miocene grazing horses. Nature., 336, 466-468.

    Google Scholar 

  • MacFadden BJ, Solounias N, Cerling TE (1999) Ancient diets, ecology, and extinction of 5-million-year-old horses from Florida. Science, 283, 824-827.

    Google Scholar 

  • Matthee CA, Robinson TJ (1997) Mitochondrial DNA phylogeography and comparative cytogenetics of the springhare, Pedetes capensis (Mammalia: Rodentia). J. Mamm. Evol., 4, 53-73.

    Google Scholar 

  • Matthee CA, Robinson TJ (1999) Mitochondrial DNA population structure of roan and sable antelope: implications for the translocation and conservation of the species. Mol. Ecol., 8, 227-238.

    Google Scholar 

  • Mindell DP, Honeycutt RL (1990) Ribosomal RNA in vertebrates: evolution and phylogenetic applications. Annu. Rev. Ecol. Sys., 21, 541-566.

    Google Scholar 

  • Mohr E (1959) Das Urwildpferd. A Ziemsen Verlag, Wittenberg, Lutherstadt.

    Google Scholar 

  • Moritz C (1994) Defining ‘Evolutionarily Significant Units’ for conservation. Trends Ecol. Evol., 9, 373-375.

    Google Scholar 

  • Oakenfull EA, Clegg JB (1998) Phylogenetic relationships within the genus Equus and the evolution of α and θ globin genes. J. Mol. Evol., 47, 772-783.

    Google Scholar 

  • Oakenfull EA, Ryder OA (1998) Mitochondrial control region and 12S rRNA variation in Przewalski' horse (Equus przewalskii). Anim. Genet., 29, 456-459.

    Google Scholar 

  • Pohle C. (1971) International Studbook of the Asiatic Wild Asses. Tierpark, Berlin.

    Google Scholar 

  • Prothero DR, Schoch RM (1989) Origin and evolution of the Perissodactyla: summary and synthesis. In: The Evolution of Perissodactyls (eds. Prothero DR, Schoch RM), pp. 504-529. Clarendon Press, Oxford University Press, New York, Oxford.

    Google Scholar 

  • Ryder OA (1978) Chromosomal polymorphism in Equus hemionus. Cytogenet. Cell Genet., 21, 177-183.

    Google Scholar 

  • Ryder OA, Epel NC, Benirschke K (1978) Chromosome banding studies of the Equidae. Cytogenet. Cell Genet., 20, 323-350.

    Google Scholar 

  • Ryder OA (1986) Species conservation and systematics: the dilemma of subspecies. TREE, 1, 9-10.

    Google Scholar 

  • Ryder OA, Chemnick LG (1990) Chromosomal and molecular evolution in Asiatic wild asses. Genetica., 83, 67-72.

    Google Scholar 

  • Ryder OA (1994) Genetic studies of Przewalski' Horses and their impact on conservation. In: Przewalski' Horses: the History and Biology of an Endangered Species (eds. Boyd L, Houpt KA), pp. 75-92. State University of New York Press, Albany.

    Google Scholar 

  • Schreiber A, Fakler P, Zimmermann W (1996) Onager and kulan: efforts to resolve a 'subspecies problem'. In: EEP Yearbook 1995/96 (eds. Rietkerk F, Brouwer K, Smits S), pp. 400-402. EAZA Executive Office, Amsterdam.

    Google Scholar 

  • Schneider CJ, Smith TB, Larison B, Moritz C (1999) A test of alternative models of diversification in tropical rainforests: ecological gradients vs. rainforest refugia. Proc. Natl. Acad. Sci., 96, 13869-13873.

    Google Scholar 

  • Simpson GG (1953) The Major Features of Evolution. Columbia University Press, New York.

    Google Scholar 

  • Smith TB, Wayne RK, Girman DJ, Bruford MW (1997) A role for ecotones in generating rainforest biodiversity. Science, 276, 1855-1857.

    Google Scholar 

  • Springer MS, Douzery E (1996) Secondary structure and patterns of evolution among mammalian mitochondrial 12S rRNA molecules. J. Mol. Evol., 43, 357-373.

    Google Scholar 

  • Strimmer K, vonHaeseler A (1996) Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol. Biol. Evol., 13, 964-969.

    Google Scholar 

  • Swofford DL (1999) PAUP*. Phylogenetic Analysis using Parsimony (*and other methods). Version 4.0. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W-Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22, 4673-4680.

    Google Scholar 

  • van Dierendonck MC, de Vries MFW (1996) Ungulate reintroductions: experiences with the Takhi or Przewalski Horse (Equus ferus przewalskii) in Mongolia. Conserv. Biol., 10, 728-740.

    Google Scholar 

  • Xu X, Arnason U (1994) The complete mitochondrial DNA sequence of the horse, Equus caballus: extensive heteroplasmy of the control region. Gene, 148, 357-362.

    Google Scholar 

  • Xu X, Gullberg A, Arnason U (1996) The complete mitochondrial DNA (mtDNA) of the donkey and mtDNA comparisons among four closely related mammalian species-pairs. J. Mol. Evol., 43, 438-446.

    Google Scholar 

  • Xu XF, Arnason U (1997) The complete mitochondrial DNA sequence of the white rhinoceros, Ceratotherium simum, and comparison with the mtDNA sequence of the Indian rhinoceros, Rhinoceros unicornis. Mol. Phylogenet. Evol., 7, 189-194.

    Google Scholar 

  • Yang Z (1994a) Estimating the pattern of nucleotide substitution. J. Mol. Evol., 39, 105-111.

    Google Scholar 

  • Yang Z (1994b) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J. Mol. Evol., 39, 306-314.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ann Oakenfull.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oakenfull, E.A., Lim, H.N. & Ryder, O.A. A survey of equid mitochondrial DNA: Implications for the evolution, genetic diversity and conservation of Equus. Conservation Genetics 1, 341–355 (2000). https://doi.org/10.1023/A:1011559200897

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011559200897

Navigation