Advertisement

Water, Air and Soil Pollution: Focus

, Volume 1, Issue 1–2, pp 375–398 | Cite as

Steady-State Models for Calculating Critical Loads of Acidity for Surface Waters

  • Arne Henriksen
  • Maximilian Posch
Article

Abstract

Three models for calculating critical loads of acidity forsurface waters, which have been used in several Europeancountries to map regions sensitive to deposition of acidifyingsulfur and nitrogen, are derived and their latest modificationsare presented. Using Norwegian lake data as an example, some ofthe methods are compared and discussed. While the Steady-StateWater Chemistry (SSWC) model and the Empirical Diatom model arebased on water chemistry alone, the First-order Acidity Balance(FAB) model also includes descriptions of the most importantsinks of nitrogen (and sulfur) in the catchment soils and thelake/sediment system. This is the first time that all currentlyused models as well as some new developments for calculatingcritical loads of acidity for surface waters are presented in a single paper.

acid rain critical loads fish damage freshwater model nitrogen steady state sulfur 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, L. A. and Brezonik, P. L.: 1988, 'Dynamic model of in-lake alkalinity generation', Water Resources Research 24, 65-74.Google Scholar
  2. Batterbee, R. W., Allot, T. E. H., Juggins, S. and Kreiser, A. M.: 1995, 'Estimating the Base Critical Load: The Diatom Model', in R. W. Battarbee (ed.), Critical Loads of Acid Deposition for U.K. Freshwaters, Report to the Critical Load Advisory Group, Department of the Environment, pp. 20-27.Google Scholar
  3. Brakke, D. F., Henriksen, A. and Norton, S. A.: 1989, 'Estimated background concentrations of sulfate in dilute lakes', Water Resources Bulletin 25(2), 247-253.Google Scholar
  4. Brakke, D. F., Henriksen, A. and Norton, S. A.: 1990, 'A variable F-factor to explain changes in base cation concentrations as a function of strong acid deposition', Verh. Internat. Verein. Limnol. 24, 146-149.Google Scholar
  5. CLAG (Critical Loads Advisory Group): 1995, 'Critical loads of acid deposition for United Kingdom freshwaters', Report prepared at the request of the Department of Environment.Google Scholar
  6. Dillon, P. J. and Molot, L. A.: 1990, 'The role of ammonium and nitrate retention in the acidification of lakes and forested catchments', Biogeochemistry 11, 23-43.Google Scholar
  7. Henriksen, A.: 1984, 'Changes in base cation concentrations due to freshwater acidification', Verh. Internat. Verein. Limnol. 22, 692-698.Google Scholar
  8. Henriksen, A., Lien, L., Traaen, T. S., Sevaldrud, I. S. and Brakke, D. F.: 1988, 'Lake acidification in Norway — Present and predicted chemical status', Ambio 17, 259-266.Google Scholar
  9. Henriksen, A., Lien, L., Rosseland, B. O., Traaen, T. S. and Sevaldrud, I. S.: 1989, 'Lake acidification in Norway — Present and predicted fish status', Ambio 18, 314-321.Google Scholar
  10. Henriksen, A., Kämäri, J., Posch, M. and Wilander, A.: 1992a, 'Critical loads of acidity: Nordic surface waters', Ambio 21, 356-363.Google Scholar
  11. Henriksen, A., Lien, L., Traaen, T. S. and Taubøll, S.: 1992b, 'Tålegrenser for overflatevann — Kartlegging av tålegrenser og overskridelser av tålegrenser for tilførsler av sterke syrer (in Norwegian)', Report O-89210, Norwegian Institute for Water Research (NIVA), Oslo, Norway.Google Scholar
  12. Henriksen, A., Posch, M., Hultberg, H. and Lien, L.: 1995, 'Critical loads of acidity for surface waters — Can the ANClimit be considered variable?', Water, Air, and Soil Pollut. 85, 2419-2424.Google Scholar
  13. Henriksen, A., Skjelkvåle, B. L., Mannio, J., Wilander, A., Harriman, R., Curtis, C., Jensen, J. P., Fjeld, E. and Moiseenko, T.: 1998, 'Northern European Lake Survey — 1995. Finland, Norway, Sweden, Denmark, Russian Kola, Russian Karelia, Scotland and Wales', Ambio 27, 80-91.Google Scholar
  14. Henriksen, A., Fjeld, E. and Hesthagen, T.: 1999, 'Critical load exceedance and damage to fish populations', Ambio 28, 583-586.Google Scholar
  15. Hindar, A., Posch, M., Henriksen, A., Gunn, J. and Snucins, E.: 2000, 'Application of the FAB model to calculate critical loads of S and N for lakes in the Killarney Provincial Park (Ontario, Canada)', Report 4202-2000, Norwegian Institute of Water Research (NIVA), Oslo, Norway.Google Scholar
  16. Ivens, W., Kauppi, P., Alcamo, J. and Posch, M.: 1990, 'Sulfur deposition onto European forests: throughfall data and model estimates', Tellus 42B, 294-303.Google Scholar
  17. Kelly, C. A., Rudd, J. W. M., Hesslein, R. H., Schindler, D.W., Dillon, P. J., Driscoll, C. T., Gherini, S. A. and Hecky, R. E.: 1987, 'Prediction of biological acid neutralization in acid-sensitive lakes', Biogeochemistry 3, 129-140.Google Scholar
  18. Lien, L., Raddum, G. G., Fjellheim, A. and Henriksen, A.: 1996, 'A critical limit for acid neutralizing capacity in Norwegian surface waters, based on new analyses of fish and invertebrate responses', Sci. Tot. Environ. 177, 173-193.Google Scholar
  19. Nilsson, J. and Grennfelt, P. (eds.): 1988, Critical Loads for Sulfur and Nitrogen, Nordic Council of Ministers, Miljørapport 1988:15, 418 pp.Google Scholar
  20. Posch, M., Kämäri, J., Forsius, M., Henriksen, A. and Wilander, A.: 1997, 'Exceedance of critical loads for lakes in Finland, Norway and Sweden: Reduction requirements for acidifying nitrogen and sulfur deposition', Environmental Management 21(2), 291-304.Google Scholar
  21. Posch M. and de Vries, W.: 1999, 'Derivation of Critical Loads by Steady-State and Dynamic Soil Models', in S. J. Langan (ed.), The Impact of Nitrogen Deposition on Natural and Semi-Natural Ecosystems, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 213-234.Google Scholar
  22. Posch, M., de Smet, P. A. M., Hettelingh, J.-P. and Downing, R. J.: 1999, 'Calculation and Mapping of Critical Thresholds in Europe', Status Report 1999. Coordination Center for Effects, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands, Report No. 259101009.Google Scholar
  23. Posch, M., Forsius, M. and Kämäri, J.: 1993, 'Critical loads of sulphur and nitrogen for lakes I: Model description and estimation of uncertainties', Water, Air, and Soil Pollut. 66, 173-192.Google Scholar
  24. Reuss, J. O. and Johnson, D. W.: 1986, Acid Deposition and the Acidification of Soils and Water, Springer, New York, 1986.Google Scholar
  25. Rosseland, B. O. and Staurnes, M.: 1994, 'Physiological Mechanisms for Toxic Effects and Resistance to Acidic Water: An Ecophysiological and Ecotoxicological Approach', in C. E. W. Steinberg and R. F. Wright (eds), Acification of Freshwater Ecosystems: Implications for the Future, John Wiley & Sons Ltd.Google Scholar
  26. Seip, H. M.: 1980, in D. Drabløs and A. Tollan (eds), Ecological Impact of Acid Precipitation, Proceedings from an International Conference, Sandefjord, Norway, March 11–14, 1980, pp. 358-366. The SNSF-project (Acid precipitation — effects on forest and fish).Google Scholar
  27. SFT: 1999, 'Overvåking av langtransporterte forurensninger 1998', Sammendragsrapport. Statlig program for forurensningsovervåking, Rapport 770/99. Statens forurensningstilsyn (SFT), Oslo, Norway.Google Scholar
  28. Skjelkvåle, B. L., Wright, R. F. and Henriksen, A.: 1998, 'Norwegian lakes show widespread recovery from acidification: Results of national surveys of lakewater chemistry 1986–1997', Hydrol. Earth System Sci. 2, 555-562.Google Scholar
  29. Tørseth, K. and Semb, A.: 1998, 'Deposition of nitrogen and other major inorganic compounds in Norway', 1992–1996, Environ. Pollut. 102, 299-304.Google Scholar
  30. UBA: 1996, Manual on Methodologies and Criteria for Mapping Critical Levels/Loads and Geographical Areas where they are Exceeded, UN/ECE Convention on Long-range Transboundary Air Pollution, Federal Environmental Agency (Umweltbundesamt), Texte 71/96, Berlin.Google Scholar
  31. UN/ECE: 1994, Protocol to the 1979 Convention on Long-range Transboundary Air Pollution on Further Reduction of Sulphur Emissions, Document EC/EB.AIR/40 (in English, French and Russian), New York and Geneva, 106 pp.Google Scholar
  32. Wilander, A.: 1994, 'Estimation of background sulphate concentrations in natural surface waters in Sweden', Water, Air, and Soil Pollut. 75, 371-387.Google Scholar
  33. Wright, R. F.: 2000, 'Use of the dynamic model MAGIC to predict recovery following implementation of the Oslo and Gothenburg protocols', Water, Air, and Soil Pollut.: Focus 1, 455-482.Google Scholar
  34. Závodský, D., Babiaková, G., Mitosinková, M., Pukanèíková, K., Roncák P., Bodis, D., Rapant, S., Mind'ás, J., Skvarenina, J., Cambel, B., Rehák, S., Wathne, B. M., Henriksen, A., Sverdrup, H., Tørseth, K., Semb, A. and Aamlid, D.: 1995, 'Mapping critical level/loads for the Slovak Republik', Acid Rain Research Report 37/1995. Norwegian Institute forWater Research (NIVA), Oslo.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  1. 1.Norwegian Institute for Water Research (NIVA)OsloNorway (e-mail
  2. 2.National Institute of Public Health and the Environment (RIVM)BilthovenThe Netherlands

Personalised recommendations