Advertisement

Journal of Polymers and the Environment

, Volume 8, Issue 2, pp 59–66 | Cite as

Biodegradation of Chitosan-Gellan and Poly(L-lysine)-Gellan Polyion Complex Fibers by Pure Cultures of Soil Filamentous Fungi

  • Kousaku Ohkawa
  • Masanori Yamada
  • Ayako Nishida
  • Norio Nishi
  • Hiroyuki Yamamoto
Article

Abstract

The degradation of two kinds of polyion complex (PIC) fibers, chitosan-gellan (CGF), and poly(L-lysine)-gellan (LGF) fibers, by seven species of soil filamentous fungi has been investigated. All of the pure-line soil filamentous fungi, Aspergillus oryzae, Penicillium caseicolum, P. citrinum, Mucor sp., Rhizopus sp., Curvularia sp., and Cladosporium sp. grew on the two fiber materials. Microscopic observation of the biodegradation processes revealed that P. caseicolum on the CGF and LGF grew, along with the accompanying collapse of the fiber matrices. In the biochemical oxygen-demand (BOD) test, the biodegradation of the LGF by P. caseicolum and Curvularia sp. exceeded 97% carbon dioxide generation and the biodegradation of the CGF by A. oryzae was 59%. These results might offer some clues to the applications of the PIC fibers as environmentally biodegradable materials.

Polyion complex fibers biodegradation soil filamentous fungi, chitosan poly(L-lysine) gellan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    H. Yamamoto, H. Tanisho, S. Ohara, and A. Nishida (1992) Intern. J. Biol. Macromol. 14, 66–72.Google Scholar
  2. 2.
    H. Yamamoto and H. Tanisho (1993) Mater. Sci. Eng. 1, 45–51.Google Scholar
  3. 3.
    H. Yamamoto and Y. Hirata (1995) Macromolecules 28, 6701–6704.Google Scholar
  4. 4.
    K. Ohkawa, T. Kitsuki, M. Amaike, H. Saitoh, and H. Yamamoto (1998) Biomaterials 19, 1855–1860.Google Scholar
  5. 5.
    H. Yamamoto, Y. Hirata,and H. Tanisho (1994) Intern. J. Biol. Macromol. 16, 81–85.Google Scholar
  6. 6.
    H. Yamamoto and Y. Hirata (1995) Polymer Gels Networks 3, 71–84.Google Scholar
  7. 7.
    H. Yamamoto, M. Amaike, and H. Saitoh (1995) Biomimetics 3, 123–129.Google Scholar
  8. 8.
    H. Yamamoto and M. Amaike (1997) Macromolecules 30, 3936–3937.Google Scholar
  9. 9.
    H. Yamamoto, M. Amaike, H. Saitoh, and Y. Sano (2000) Mater. Sci. Eng. C7, 143–147.Google Scholar
  10. 10.
    H. Yamamoto, T. Kituki, A. Nishida, K. Asada, and K. Ohkawa (1999) Macromolecules 32, 1055–1061.Google Scholar
  11. 11.
    M. Amaike, Y. Senoo, and H. Yamamoto (1998) Macromol. Rapid Commun. 19, 287–289.Google Scholar
  12. 12.
    H. Yamamoto, C. Horita, Y. Senoo, A. Nishida, and K. Ohkawa (2001) J. Appl. Polymer Sci. 79, 437–446.Google Scholar
  13. 13.
    H. Yamamoto and Y. Senoo (2000) Macromol. Chem. Phys. 201, 84–92.Google Scholar
  14. 14.
    K. Ohkawa, Y. Takahashi, and H. Yamamoto (2000) Macromol. Rapid Commun. 21, 223–225.Google Scholar
  15. 15.
    G. Sanderson (1990) in P. Harris (Ed.), Food Gels, Elsevier Applied Sci, London, pp. 201–232.Google Scholar
  16. 16.
    W. Gibson (1992) in A. Imeson (Ed.), Thickening and Gelling Agents for Food, Chapman & Hall, London, pp. 227–249.Google Scholar
  17. 17.
    R. A. A. Muzzarelli (1977) Chitin, Pergamon, Oxford.Google Scholar
  18. 18.
    H. Silman and M. Sela (1967) in G. Fasman (Ed.), Poly-a-Amino Acids, Marcel Dekker, New York, pp. 605–673.Google Scholar
  19. 19.
    H. Yamamoto and J. Yang (1974) Biopolymers 13, 1109–1116.Google Scholar
  20. 20.
    M. Hatano and M. Yoneyama (1970) J. Amer. Chem. Soc. 92, 1392–1395.Google Scholar
  21. 21.
    H. Yamamoto and M. Amaike (1995), Proc. 4th Jpn. Intern. Soc. Advan. Mater. Process Eng. 589–594.Google Scholar
  22. 22.
    Y. Doi, K. Kasuya, H. Abe, N. Koyama, S. Ishiwatari, K. Takagi, and Y. Yoshida (1996) Polymer Degrad. Stab. 51, 281–286.Google Scholar
  23. 23.
    K. Kasuya, K. Takagi, S. Ishiwatari, Y. Yoshida, and Y. Doi (1998) Polymer Degrad. Stab. 59, 327–332.Google Scholar
  24. 24.
    B. R. Davidson, A. Gertler, and T. Hofmann (1975) Biochem. J. 147, 45–53.Google Scholar
  25. 25.
    E. Ichishima, M. Emi, E. Majima, Y. Mayumi, H. Kumagai, K. Hayashi, and K. Tomoda (1982) Biochim. Biophys. Acta 700, 247–253.Google Scholar
  26. 26.
    K. Gomi, K. Arikawa, N. Kamiya, K. Kitamoto, and C. Kumagai (1993) Biosci. Biotechnol. Biochem. 57, 1095–1100.Google Scholar
  27. 27.
    M. V. Ramesh, T. D. Sirakova, and P. E. Kolattukudy (1995) Gene 165, 121–125.Google Scholar
  28. 28.
    M. M. Prasad and H. N. P. Singh (1995) Lett. Appl. Microbiol. 21, 235–236.Google Scholar
  29. 29.
    H. Sharma (1987) Trans. Br. Mycol. Soc. 88, 122–125.Google Scholar
  30. 30.
    J. Rodriguez, M. J. Santos, P. J. L. Copa, and L. M. I. Perez (1993) Lett. Appl. Microbiol. 16, 69–71.Google Scholar
  31. 31.
    V. H. Varel, K. K. Kreikemeier, H. J. G. Jung, and R. D. Hatfield (1993) Appl. Environ. Microbiol. 59, 3171–3176.Google Scholar
  32. 32.
    K. Lynn and I. Sutherland (1994) Microbiology 140, 3007–3013.Google Scholar
  33. 33.
    W. Hashimoto, T. Inose, H. Nakajima, N. Sato, S. Kimura, and K. Murata (1996) Appl. Environ. Microbiol. 62, 1475–1477.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Kousaku Ohkawa
    • 1
  • Masanori Yamada
    • 2
  • Ayako Nishida
    • 2
  • Norio Nishi
    • 3
  • Hiroyuki Yamamoto
    • 2
  1. 1.Institute of High Polymer Research, Faculty of Textile Science and TechnologyShinshu UniversityNaganoJapan
  2. 2.Institute of High Polymer Research, Faculty of Textile Science and TechnologyShinshu UniversityNaganoJapan
  3. 3.Division of Bioscience, Graduate School of Environmental Earth ScienceHokkaido UniversitySapporoJapan

Personalised recommendations