Aquatic Ecology

, Volume 35, Issue 1, pp 51–60 | Cite as

Pumping behaviour and filtration rate of the freshwater mussel Potomida littoralis as a tool for rapid detection of water contamination

  • A. Mouabad
  • M. Ait Fdil
  • A. Maarouf
  • J.C. Pihan
Article

Abstract

In order to evaluate the ability of the freshwater bivalve Potomida littoralis for use as a biodetector of aquatic pollution, the short-term effects of some pollutants (metals, antifouling product and effluents) on pumping activity of this mussel were studied qualitatively (pumping behaviour) and quantitatively (filtration rate). The method of the flow sensing at the exhalent siphon showed that the normal activity of P. littoralis was characterized by a continuous pattern of pumping with occasional and brief interruptions. When exposed to toxic stress, the exhalent flow immediately shifted to an intermittent pattern with periods of pumping alternating with periods of pause that could last several minutes. The threshold concentrations of heavy metals/antifouling agent inducing this type of activity within 2 h were: 25 μg l−1 for copper, 90 μg l−1 for cadmium, 5 μg l−1 for mercury, 3000 μg l−1 for zinc and 700 μg l−1 for the antifouling agent Mexel. Both the effluent samples of the urban wastewater of Marrakech city tested were found to be toxic.

The filtration rate of control animals ranged from 0.91 to 1.72 l h−1 g−1 animal, while after 3 h exposure to Cu, Cd, Hg and the effluent E1 and E2, filtration rates were decreased by concentrations above the threshold levels set as toxic for the pumping activity.

The sensitivity of P. littoralis to pollution and its usefulness as biodetector for rapid toxicity screening is discussed and a procedure for the detection of pollution in Moroccan freshwater is proposed.

filtration rate freshwater mussel metals pumping behaviour toxicity screening 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel PD (1976) Effects of some pollutants on the filtration rate of Mytilus. Mar Poll Bull 7: 228-231Google Scholar
  2. Baldwin IG and Kramer KJM (1994) Biological early warning systems (BEWS). In: Kramer KJM (ed.) Biomonitoring of Coastal Waters and Estuaries. CRC Press, Boca Raton, F.L., pp. 1-28Google Scholar
  3. Bayne BL, Brown DA, Burns K, Dixon DR, Ivanovici A, Livingstone DR, Lowe DM, Moore MN, Stebbing ARD and Widdows J (1985) The Effects of Stress and Pollution on Marine Animals. Praeger Publishers, New York, 384 pp.Google Scholar
  4. B.O. (1995) Loi no. 10-95 sur l'Eau. Bulletin Officiel du Royaume du Maroc no. 4325. RabatGoogle Scholar
  5. Borcherding J (1992) Another early warning system for the detection of toxic discharges in the aquatic environment based on valve movements of the freshwater mussel Dreissena polymorpha. In: Neumann and Jenner (eds.), The zebra mussel Dreissena Polymorpha. Limnologie Actuell 4: 127-146Google Scholar
  6. Borcherding J and Jantz B (1997) Valve movement response of the mussel Dreissena polymorpha:the influence of pH and turbidity on the acute toxicity of pentachlorophenol under laboratory and field conditions. Ecotoxicology 6: 153-165Google Scholar
  7. Cahoon LB and Owen DA (1996) Can suspension feeding by bivalves regulate phytoplankton biomass in lakeWaceamaw, North Carolina. Hydrobiologia 352: 193-200Google Scholar
  8. Coughlan J (1969) The estimation of filtering rate from the clearance of suspensions. Mar Biol 2: 356-358Google Scholar
  9. Doherty F (1990) The asiatic clam, Corbicula spp., as a biological monitor in freshwater environments. Environ Monitor Assess, 15: 143-181Google Scholar
  10. Englund V and Heino M (1994) Valve movement of freshwater mussel Anodonta anatica: a reciprocal transplant experiment between two lakes. Ann Zool Fennici 31: 417-423Google Scholar
  11. Foster-Smith RL (1976) Some mechanisms for the control of pumping activity in bivalves. Mar Behav Physiol 4: 41-60Google Scholar
  12. Jenner HA, Noppert F and Sikking T (1989) A new system of detection of valve movement response of bivalves. Kema Scient. Techn. Reports 7: 91-98Google Scholar
  13. Kiibus M and Kautsky N (1996) Respiration, nutrient, excretion, and filtration rate of tropical freshwater mussels and their contribution to production and energy flow in lake Kariba, Zimbabwe. Hydrobiologia 331: 25-32Google Scholar
  14. Kontreczky Cs, Farkas A, Nemczok J and Salanki J (1997) Short and long-term effects of Deltametrin on filtering activity of freshwater mussel (Anodonta cygnea L.). Ecotoxicol. Environ. Saf. 38: 195-199Google Scholar
  15. Kraak MHS, Kuipers F, Schoon H, DE Groot CJ and Admiraal W (1994) The filtration rate of zebra mussel Dreissena polymorpha used for water quality assessment of Dutch rivers. Hydrobiologia 294: 13-16Google Scholar
  16. Kramer KJM, Jenner H and De Zwart D (1989) The valve movement response of mussels: a tool in biological monitoring. Hydrobiologia 188/189: 433-443Google Scholar
  17. Manley AR (1983) The effects of copper on the behaviour, respiration, filtration and ventilation activity of Mytilus edulis. J Mar Biol Ass 63: 205-222Google Scholar
  18. Mohan CV, Menon NR and Gupta TRC (1986) Filtration in some tropical intertidal bivalves exposed to mercury and cadmium mixture. Fish Technol 23: 204-210Google Scholar
  19. Mouabad A (1998) Mise au point d'un biodétecteur de pollution basé sur la réponse comportementale du bivalve Potomida littoralis aux micropolluants et effluents. Progress Report of the IFS Grant A-2077/1. IFS-StockholmGoogle Scholar
  20. Mouabad A and Pihan JC (1992) The pumping behaviour response of Dreissena polymorpha to pollutants: A method for toxicity screening. In: Neumann and Jenner (eds.), The zebra mussel Dreissena polymorpha. Limnologie Aktuell 4: 147-154Google Scholar
  21. Mouabad A and Pihan JC (1993) Le test comportemental de Dreissena polymorpha: un outil biologique de prévision et d'évaluation de la toxicité en milieu d'eau douce. Hydroecol Appl 1: 97-109Google Scholar
  22. Naimo TJ, Atchison GJ and Holland-Bartels LE (1992) Sublethal effects of Cadmium on physiological responses in the pocketbook mussel, Lampsilis ventricosa. Environ Toxicol Chem 11: 1013-1021Google Scholar
  23. Nejmeddine A, Fars S and Echab A (2000) Removal of dissolved and particulate form of metals (Cu, Zn, Pb, Cd) by an anaerobic pond system in Marrakech (Morocco). Environ Technol 21: 225-230Google Scholar
  24. Phillips DJH and Rainbow PS (1988) Barnacles and mussels as biomonitors of trace elements: a comparative study. Mar Ecol Prog Ser 49: 83-93Google Scholar
  25. Pynnonen KS and Huebuer J (1995) Effects of episodic low pH exposure on the valve movements of the freshwater bivalve Anodonta cygnea L. Wat Res 29: 2579-2582Google Scholar
  26. Ropers DS and Hickey CW (1995) Effects of food and Silt on filtration, respiration and condition of the freshwater mussel Hyridella menziesi (Unionacea: Hydriidae): implications for bioaccumulation. Hydrobiologia 312: 17-25Google Scholar
  27. Salanki J (1992) Heavy metal induced behaviour modulation in mussels: possible neural correlates. Acta Biol. Hungaria 43: 375-386Google Scholar
  28. Salanki J, Turpaev TM and Nichaeva M (1991) Mussel as a test animal for assessing environmental pollution and the sub-lethal effects of pollutants. In: Jeffrey DW and Madden B (eds.) Bioindicators and Environmental Management. Academic Press, London, pp. 235-244Google Scholar
  29. Salanki J and V-Balogh K (1989) Physiological background for using freshwater mussels in monitoring copper and lead pollution. Hydobiologia 188/189: 445-454Google Scholar
  30. Sericano JL, Wade TL, Jackson TJ, Brooks JM, Tripp BW, Farrington JW, Mee LD, Readmann JW, Villeneuve JP and Goldberg ED (1995) Trace organic contamination in the Americas: An overview of the US national status & trends and the international Mussel Watch programmes. Mar Poll Bull 31: 214-225Google Scholar
  31. Van Damme D (1984) The Freshwater Mollusca of Northern Africa. Dr W. Junk Publ., Dordrecht, 164 pp.Google Scholar
  32. Watling H (1981) The effects of metals on mollusc filtering rates. Trans Roy Soc S Afr 44: 441-451Google Scholar
  33. Watling H and Watling RJ (1982) Comparative effects of metals on the filtering rate of the brown mussel Perna perna. Bull Environ Contam Toxicol 29: 651-657Google Scholar
  34. Widdows J (1985) Physiological measurments. In: Bayne BL (ed.), The effects of stress and pollution on marine animals. Praeger, New York, pp. 3-45Google Scholar
  35. Widdows J and Donkin P (1992) Mussels and environmental contaminants: Bioaccumulation and physiological aspects. In: Gosling E (ed.), The Mussel Mytilus. Elsevier Press. Amsterdam, pp. 383-424Google Scholar
  36. Widdows J, Nasci C and Fossato VU (1997) Effects of pollution on the scope for growth of mussels (Mytilus galloprovincialis) from the venice lagoon, Italy. Mar Environ Res 43: 69-79Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • A. Mouabad
    • 1
  • M. Ait Fdil
    • 2
  • A. Maarouf
    • 2
  • J.C. Pihan
    • 3
  1. 1.Faculty of Science & TechniquesEnvironmental Biomonitoring LaboratoryMarrakechMorocco
  2. 2.Environmental Biomonitoring Laboratory, Faculty of Science & TechniquesMarrakechMorocco
  3. 3.UPRES EBSE, Univ. Metz, Rue du Général Delestraint- 57070 MetzFrance

Personalised recommendations