Reliable Computing

, Volume 7, Issue 1, pp 53–57 | Cite as

On ∧-Subdistributivity and ∨-Superdistributivity with Respect to Interval Map in Kaucher Arithmetic

  • Gregory G. Menshikov
  • Alexey V. Tomashevsky


Kaucher interval arithmetic subdistributivity and superdistributivity properties with respect to some interval maps are discussed. These properties are equivalent to inclusion monotonicity of the map.


Mathematical Modeling Computational Mathematic Industrial Mathematic Inclusion Monotonicity Kaucher Arithmetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gardeñes, E. and Trepat, A.: Fundamentals of SIGLA, an Interval Computing System over the Completed Set of Intervals, Computing 24 (1980), pp. 161–179.Google Scholar
  2. 2.
    Gardñnes, E., Trepat, E., and Mielgo, H.:Present Perspective of the SIGLA Interval System, Freiburger Intervall-Berichte 82(9) (1982), pp. 1–65.Google Scholar
  3. 3.
    Kaucher, E.: Interval Analysis in the Extended Interval Space IIR, Computing Supplement 2 (1980), pp. 33–49.Google Scholar
  4. 4.
    Kupriyanova, L.: Inner Estimation of the United Solution Set of Interval Linear Algebraic System, Reliable Computing 1(1) (1995), pp. 15–32.Google Scholar
  5. 5.
    Menshikov, G. G.: Intersection Subdistributivity and Interval Hull Superdistributivity with Respect to the Interval Maps, Reliable Computing 4(4) (1998), pp. 377–381.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Gregory G. Menshikov
    • 1
  • Alexey V. Tomashevsky
    • 1
  1. 1.Faculty of Applied Mathematics—Control ProcessesSaint Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations