Biomedical Microdevices

, Volume 3, Issue 3, pp 175–182

Aspiration and Dispensing of Biological Liquids in the Micro- and Submicroliter Range with High Precision

  • Nicolas Szita
  • Rudolf A. Buser
  • Jurg Dual


This paper describes the design and the fabrication as well as the measurement results of a new micropipetting device designed for the pipetting of biological liquids in the micro- and submicroliter range. The device is a modular set-up including a precision pipetting head with two integrated sensors realized in silicon bulk micromachining and a coupled piezo disk-type actuator to fulfil the force and stroke requirements for fast pipetting. With this device we have pipetted water from 0.4 to 2.7 μl and serum from 0.45 μl to 3.1 μl. The measurements were undertaken in open-loop mode and the coefficients of variation for repeated pipetting cycles were below 4%. Due to the integrated sensors the system can be expanded to a closed-loop system to compensate for the piezoactuator's hysteresis and drift, thus further increasing precision and accuracy.

liquid handling dispensing submicroliter biological liquids serum valve-less 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. Burger, F. Baader, R. Buser, O. Elsenhans, and N. Szita, Micromechanical pipetting device, Patent Application No. EP 0 865 824 Al, by Hoffmann-La Roche (1998).Google Scholar
  2. M. Di Giovanni, Flat and Corrugated Diaphragm Design Handbook, Mechanical Engineering Vol. 11, (Marcel Dekker Inc., New York, 1982), p. 157.Google Scholar
  3. I. Ederer, J. Grasegger, and C. Tille, Transducers'97, Chicago, USA, 3A3.03 (1997).Google Scholar
  4. V. Gass, B.H. van der Schoot, S. Jeanneret, and N.F. de Rooij, Sensors and Actuators A43, 335-338 (1994).Google Scholar
  5. N. Hey, M. Freygang, H. Gruhler, H. Sandmaier, and R. Zengerle, MEMS'98, Heidelberg, Germany, 429-431 (1998).Google Scholar
  6. St. Howitz, M. Bürger, and Th. Wegener, Elektrisch steuerbare Mikro-Pipette, Patent Application No. EP 0 725 267 B1, by Forschungszentrum Rossendorf (1996).Google Scholar
  7. T.S.J. Lammerink, M. Elwenspoek, and J.H.J. Fluitman, MEMS'93, Fort Lauderdale, USA, 254-259 (1993).Google Scholar
  8. D. Maillefer, Harald van Lintel, G.-R. Mermet, R. Hirschi, and S.A. Debiotech, MEMS'99, Orlando, USA, 541-546 (1999).Google Scholar
  9. M. Richter, R. Linnemann, and P. Woias, Sensors and Actuators A68, 480-486 (1998).Google Scholar
  10. E. Stemme and G. Stemme, Sensors and Actuators A39, 159-167 (1993).Google Scholar
  11. N. Szita and R. Buser, Proc. of Micro-and Nanofabricated Structures and Devices for Biomedical Environmental Applications, SPIE'98, San Jose, USA, 156-163 (1998).Google Scholar
  12. N. Szita, R. Buser, and O. Elsenhans, Patent Application No. EP 99811094.4, by Hoffmann-La Roche (1999).Google Scholar
  13. N. Szita, A Micromachined Pipetting Device with Integrated Sensors, Dissertation ETH No. 13771, Zürich, Switzerland, 2000 (Juris Druck + Verlag Dietikon, Switzerland, ISBN 3 260 05444 8, 2001).Google Scholar
  14. N. Szita, R. Sutter, J. Dual, and R. Buser, Sensors and Actuators A89, 112-118 (2001).Google Scholar
  15. H.T.G. van Lintel, F.C.M. an de Pol, and S. Bouwstra, Sensors and Actuators 15, 153-167 (1988).Google Scholar
  16. R. Zengerle, J. Ulrich, S. Kluge, M. Richter, and A. Richter, Sensors and Actuators A50, 81-86 (1995).Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Nicolas Szita
    • 1
  • Rudolf A. Buser
    • 2
  • Jurg Dual
    • 1
  1. 1.Institute of Mechanical SystemsETH ZurichZurichSwitzerland
  2. 2.Institute of MicrosystemstechnologyInterstate University of Applied Science BuchsBuchsSwitzerland

Personalised recommendations