Advertisement

GeoInformatica

, Volume 5, Issue 3, pp 221–260 | Cite as

OMT-G: An Object-Oriented Data Model for Geographic Applications

  • Karla A.V. Borges
  • Clodoveu A. Davis
  • Alberto H.F. Laender
Article

Abstract

Semantic and object-oriented data models, such as ER, OMT, IFO, and others, have been extensively used for modeling geographic applications. Despite their semantic expressiveness, such models present limitations to adequately model those applications, since they do not provide appropriate primitives for representing spatial data. This paper presents OMT-G, an object oriented data model for geographic applications. OMT-G provides primitives for modeling the geometry and the topology of spatial data, supporting different topological structures, multiple views of objects, and spatial relationships. OMT-G also includes tools to specify transformation processes and presentation alternatives, that allow, among many other possibilities, modeling for multiple representations and multiple presentations. In this way, it overcomes the main limitations of the existing models, thus providing more adequate tools for modeling geographic applications. A comparison with other data models is also presented in order to stress the main advantages of OMT-G.

Geographic Information Systems geographic data modeling geographic software design database modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Abiteboul and R.H. Richard. “IFO: a formal semantic database model,” ACM Transactions on Database Systems, Vol. 12(4):525–565, 1987.Google Scholar
  2. 2.
    G. Abrantes and R. Carapuça. “Explicit representation of data that depend on topological relationships and control over data consistency,” in Proc. Fifth European Conference and Exhibition on Geographical Information Systems—EGIS/MARI'94, Vol. 1:869–877, 1994. (wwwsgi.ursus.maine.edu/gisweb/egis/eg94100.html)Google Scholar
  3. 3.
    Y. Bédard, C. Caron, Z. Maamar, B. Moulin, and D. Valliére. “Adapting data models for the design of spatio-temporal databases,” Computers, Environment and Urban Systems, Vol. 20(1):19–41, 1996.Google Scholar
  4. 4.
    K.A.V. Borges and F.T. Fonseca. “Geographic data modeling in discussion,” in Proc. GIS Brasil'96, 525–532, 1996. In Portuguese.Google Scholar
  5. 5.
    K.A.V. Borges, A.H.F. Laender, and C.A. Davis Jr. “Spatial data integrity constraints in object oriented geographic data modeling,” in Proceedings of the 7th International Symposium on Advances in Geographic Information Systems (ACM GIS'99), 1–6, 1999.Google Scholar
  6. 6.
    K.A.V. Borges. “Geographic data modeling—an extension of the OMT model for geographic applications,” Master's thesis, João Pinheiro Foundation, Minas Gerais Government School, 1997. In Portuguese.Google Scholar
  7. 7.
    M.A. Botelho “Incorporating spatio-temporal facilities to object-oriented database management systems,” Master's thesis, DCC-UNICAMP, 1995. In Portuguese.Google Scholar
  8. 8.
    G. Camara, U. Freitas, R. Souza, M. Casanova, A. Hemerly, and C. Medeiros. “A model to cultivate objects and manipulate fields,” in Proc. 2nd ACM Workshop on Advances in GIS, 20–28, 1994.Google Scholar
  9. 9.
    G. Camara. “Models, languages, and architectures for geographic databases,” Ph.D. Thesis, INPE, 1995. In Portuguese.Google Scholar
  10. 10.
    C. Caron and Y. Bédard. “Extending the individual formalism for a more complete modeling of urban spatially referenced data.” Computers, Environment and Urban Systems, Vol. 17:337–346, 1993.Google Scholar
  11. 11.
    P. Chen. “The entity-relationship model—toward a unified view of data,” ACM Transactions on Database Systems, Vol. 1(1):9–36, 1976.Google Scholar
  12. 12.
    E. Clementini, P. Felice, and P. Oosterom. “A small set of formal topological relationships suitable for end-user interaction,“ in Proc. 3rd Symposium on Spatial Database Systems, 277–295, 1993.Google Scholar
  13. 13.
    P. Coad and E. Yourdon. Object-Oriented Analysis, 2nd edition. Prentice Hall, 1991.Google Scholar
  14. 14.
    S. Cockcroft. “A taxonomy of spatial data integrity constraints,” GeoInformatica, Vol. 1(4):327–343, 1997.Google Scholar
  15. 15.
    C.A. Davis Jr. “Multiple representations in geographic information systems,” Ph.D. Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, 2000. In Portuguese.Google Scholar
  16. 16.
    C.A. Davis Jr. and A.H.F. Laender. “Multiple representations in GIS: materialization through geometric, map generalization, and spatial analysis operations,” in Proceedings of the 7th International Symposium on Advances in Geographic Information Systems (ACM GIS'99), 60–65, 1999.Google Scholar
  17. 17.
    M.J. Egenhofer and R.D. Franzosa. “Point-set topological spatial relations,” International Journal of Geographical Information Systems, Vol. 5(2):161–174, 1991.Google Scholar
  18. 18.
    M.J. Egenhofer and J. Herring. “A mathematical framework for the definition of topological relationships,” in Proc. 4th International Symposium on Spatial Data Handling, 803–813, 1990.Google Scholar
  19. 19.
    R. Elmasri and S. Navathe. Fundamentals of database systems. 2nd Edition. Addison-Wesley, 1994.Google Scholar
  20. 20.
    M. Feutchwanger. “Towards a geographic semantic data model,” Ph.D. thesis, Simon Fraser University, 1993.Google Scholar
  21. 21.
    A.U. Frank. “Qualitative spatial reasoning: cardinal directions as an example,” International Journal of Geographical Information Systems, Vol. 10(3):269–290, 1996.Google Scholar
  22. 22.
    A.U. Frank and M.F. Goodchild. “Two perspectives on geographical data modeling,” National Center for Geographic Information and Analysis (NCGIA). Technical Report 90–11, 1990.Google Scholar
  23. 23.
    J. Freeman. “The modelling of spatial relations,” Computer Graphics and Image Processing, Vol. 4:156–171, 1975.Google Scholar
  24. 24.
    M.F. Goodchild. “Geographical data modeling,” Computers & Geosciences, 18(4):401–408, 1992.Google Scholar
  25. 25.
    K.K. Kemp. “Environmental modeling with GIS: A strategy for dealing with spatial continuity,” Ph.D. thesis, University of California at Santa Barbara, 1992.Google Scholar
  26. 26.
    G. Kösters, B. Pagel, and H. Six. “GIS-application development with GeoOOA,” International Journal of Geographical Information Science, Vol. 11(4):307–335, 1997.Google Scholar
  27. 27.
    A.H.F. Laender and D.J. Flynn. “A semantic comparison of modelling capabilities of the ER and NIAM models,” in, R. Elmasri, V. Kouramajian, and B. Thalheim (Eds.) Entity-Relationship Approach—ER'93, 242–256, Springer-Verlag, 1994.Google Scholar
  28. 28.
    J. Lisboa Filho. “Conceptual data models for geographic information systems,” Technical Report EQ-12, UFRGS, 1997. In Portuguese.Google Scholar
  29. 29.
    J. Lisboa Filho and C. Iochpe. “Comparative analysis of conceptual data models for geographic information systems,” Technical Report RP-266, UFRGS, 1996. In Portuguese.Google Scholar
  30. 30.
    D.M. Mark, M.J. Egenhofer, and A.R.M. Shariff. “Towards a standard for spatial relations in SDTS and geographic information systems,” in Proc. GIS/LIS'95, 686–695, 1995.Google Scholar
  31. 31.
    D.M. Mark and A.U. Frank. “Language issues for geographical information systems,” National Center for Geographic Information and Analysis (NCGIA), Technical Report 90–10, 1990.Google Scholar
  32. 32.
    R.B. McMaster and K.S. Shea. Generalization in Digital Cartography, Association of American Geographers, 1992.Google Scholar
  33. 33.
    J.C. Müller, R. Weibel, J.P. Lagrange, and F. Salgé. “Generalization: state of art and issues,” in J.C. Müller, J.P. Lagrange, and R. Weibel (Eds.) GIS and generalization: methodology and practice, 3–17, Taylor & Francis, 1995.Google Scholar
  34. 34.
    J.L. Oliveira, F. Pires, and C.M.B. Medeiros. “An environment for modeling and design of geographic applications,” GeoInformatica, Vol. 1(1):29–58, 1997.Google Scholar
  35. 35.
    D. Papadias and Y. Theodoridis. “Spatial relations, minimum bounding rectangles, and spatial data structures,” International Journal of Geographical Information Science, Vol. 11(2):111–138, 1997.Google Scholar
  36. 36.
    D.J. Peuquet. “A conceptual framework and comparison of spatial data models,” Cartographica, Vol. 21:666–113, 1984.Google Scholar
  37. 37.
    “Rational Software Corporation,” The Unified Language. Notation guide, version 1.1 July 1997. (http://www.rational.com).Google Scholar
  38. 38.
    A. Renolen. “Conceptual modelling and spatiotemporal information systems: How to model the real world,” in Proc. 6th Scandinavian Research Conference on GIS (SCANGIS'97), 1997. (http://www.iko.unit.no/home/agnar)Google Scholar
  39. 39.
    J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Modeling and Design, Prentice-Hall, 1991.Google Scholar
  40. 40.
    J. Rumbaugh. OMT Insights: Perspectives on Modeling from the Journal of Object-Oriented Programming. SIGS Books, 1996. 390 pp.Google Scholar
  41. 41.
    S. Shekhar, M. Coyle, B. Goyal, D. Liu, and S. Sarkar. “Data models in geographic information systems,” in Communications of the ACM, Vol. 40(4):103–111, 1997.Google Scholar
  42. 42.
    H. Tardieu, A. Rochfeld, and R. Colletti. La Méthode Merisc: Principes et Outils, Tome I. Les Éditions d'Organisation, 1986.Google Scholar
  43. 43.
    M.F. Worboys. “A unified model for spatial and temporal information,” The Computer Journal, Vol. 37(1):26–34, 1994.Google Scholar
  44. 44.
    M.F. Worboys, H.M. Hearnshaw, and D.J. Maguire. “Object-oriented data modelling for spatial databases,” International Journal of Geographical Information Systems, Vol. 4(4):369–383, 1990.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Karla A.V. Borges
    • 1
    • 2
  • Clodoveu A. Davis
    • 3
  • Alberto H.F. Laender
    • 4
  1. 1.Empresa de Informática e Informação do Município de Belo HorizontePRODABELBelo Horizonte, MGBrazil
  2. 2.Departamento de Ciência da ComputaçãoUniversidade Federal de Minas GeraisBelo Horizonte, MGBrazil
  3. 3.Empresa de Informática e Informação do Município de Belo HorizontePRODABEL -Belo Horizonte, MGBrazil
  4. 4.Departamento de Ciência da ComputaçãoUniversidade Federal de Minas GeraisBelo Horizonte, MGBrazil

Personalised recommendations