Journal of Seismology

, Volume 5, Issue 2, pp 157–179 | Cite as

Scattering attenuation and intrinsic absorption using uniform and depth dependent model – Application to full seismogram envelope recorded in Northern Chile

  • Mitsuyuki Hoshiba
  • Andreas Rietbrock
  • Frank Scherbaum
  • Hisashi Nakahara
  • Christian Haberland


Two seismic wave attenuation factors, scatteringattenuation Qs-1 and intrinsicabsorption Qi-1 are measured using theMultiple Lapse Time Window (MLTW) analysis method forthree different frequency bands, 1–2, 2–4, and 4–8 Hz.Data from 54 temporally deployed seismic stationslocated in northern Chile are used. This methodcompares time integrated seismic wave energies withsynthetic coda wave envelopes for a multiple isotropicscattering model. In the present analysis, the waveenergy is assumed to decay with distance in proportionto1/GSF·exp(- (Qs-1+Qi-1)·ω r/v), where r, ω and v are the propagationdistance, angular frequency and S wave velocity,respectively, and GSF is the geometricalspreading factor. When spatial uniformity of Qs-1, Qi-1 and v isassumed, i.e. GSF = 4πr2, theestimates of the reciprocal of the extinction length,Le-1 (= (Qs-1+Qi-1)·ω/v), are 0.017,0.012 and 0.010 km-1, and those of the seismicalbedo, B0 (= Qs-1/ (Qs-1+Qi-1)), are 0.48, 0.40and 0.34 for 1–2, 2–4 and 4–8 Hz, respectively, whichindicates that scattering attenuation is comparable toor smaller than intrinsic absorption. When we assumea depth dependent velocity structure, we also findthat scattering attenuation is comparable to orsmaller than intrinsic absorption. However, since thequantitative estimates of scattering attenuationdepend on the assumed velocity structure (strength ofvelocity discontinuity and/or Moho depth), it isimportant to consider differences in velocitystructure models when comparing attenuation estimates.

absorption Andes Chile layered media lithosphere Q scattering seismic coda seismic wave propagation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aki, K., 1969, Analysis of the seismic coda of local earthquakes as scattered wave, J. Geophys. Res. 74, 615–631.Google Scholar
  2. Aki, K., 1980, Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz, Phys. Earth Int. 21, 50–60.Google Scholar
  3. Aki, K. and Richards, P.G., 1980, Quantitative Seismology Theory and Methods, W.H. Freeman cond company, 932 pp.Google Scholar
  4. Akinci, A., Del Pezzo, E. and Ibanez, J.M., 1995, Separation of scattering and intrinsic attenuation in soouthern Spain and western Anatolia (Turkey), Geophys. J. Int. 121, 337–353.Google Scholar
  5. Canas, J.A., Ugalde, A., Pujades, L.G., Carracedo, J.C., Blanco, M.J. and Soler, V., 1998, Intrinsic and scattering seismic wave attenuation in the Canary islands, J. Geophys. Res. 103, 15,037–15,049.Google Scholar
  6. Delouis, B., Monfret, T., Dorbath, L., Pardo, M., Rivera, L., Comte, D., Haessler, H., Caminade, J.P., Ponce, L., Kausel, E. and Cisternas, A., 1997, The Mw=8.0 Antofagasta (North Chile) earthquake of 30 July, 1995: A precursor to the end of the large 1877 gap, Bull. Seis. Soc. Am. 87, 427–445.Google Scholar
  7. Fehler, M., Hoshiba, M., Sato, H. and Obara, K., 1992, Separation of scattering and intrinsic attenuation for the Kanto-Tokai region, Japan using measurements of S-wave energy vs hypocentral distance, Geophys. J. Int. 108, 787–800.Google Scholar
  8. Gusev, A.A., 1995, Vertical profile of turbidity and coda Q, Geophys. J. Int. 123, 665–672.Google Scholar
  9. Haberland, Ch. and Rietbrock, A., 2000, Attenuation tomography in the western central Andes: A detailed insight into the structure of a magmatic arc, J. Geophys. Res. (Accepted).Google Scholar
  10. Hoshiba, M., 1991, Simulation of multiple scattered coda wave excitation based on the energy conservation law, Phys. Earth Planet. Int. 67, 123–136.Google Scholar
  11. Hoshiba, M., 1993, Separation of scattering attenuation and intrinsic absorption in Japan using the multiple lapse time window analysis of full seismogram envelope, J. Geophys. Res. 98, 15,809–15,824.Google Scholar
  12. Hoshiba, M., 1994, Simulation of coda wave envelope in depth dependent scattering and absorption structure, Geophys. Res. Lett. 21, 2853–2856.Google Scholar
  13. Hoshiba, M., 1997, Seismic coda wave envelope in depth-dependent S wave velocity structure, Phys. Earth Planet. Int. 104, 15–22.Google Scholar
  14. Hoshiba, M., 2000, Large fluctuation of wave amplitude produced by small fluctuation of velocity structure, Phys. Earth Planet. Int. 120, 201–217.Google Scholar
  15. Hoshiba, M., Sato, H. and Fehler, M., 1991, Numerical basis of the separation of scattering and intrinsic absorption from full seismogram envelope – A Monte Carlo simulation of multiple isotropic scattering, Pap. Geophys. Meteorol. (Bulletin of Meteorol. Res. Inst.) 42, 65–91.Google Scholar
  16. Jin, A., Mayeda, K., Adams, D. and Aki, K., 1994, Separation of intrinsic and scattering attenuation in southern California using TERRAscope data, J. Geophys. Res. 99, 17,835–17,848.Google Scholar
  17. Liu, H.L. and Helmberger, D.V., 1985, The 23:19 aftershock of the 15 October 1979 Imperial valley earthquake: more evidence for an asperity, Bull. Seis. Soc. Am. 75, 689–708.Google Scholar
  18. Mamada, Y. and Takenaka, H., 1998, Comparison of Qc —1 estimates from coda envelopes constructed from one-and multicomponent seismograms, J. Phys. Earth 45, 455–466.Google Scholar
  19. Margerin, L., Campillo, M., Shapiro, N.M. and van Tiggelen, B., 1999, Residence time of diffuse waves in the crust as a physical interpretation of coda Q: application to seismograms recorded in Mexico. Geophys. J. Int. 138, 343–352.Google Scholar
  20. Mayeda, K., Koyanagi, S., Hoshiba, M., Aki, K. and Zeng, Y., 1992, A comparative study of scattering, intrinsic and coda Q—1 for Hawaii, Long Valley and central California between 1.5 and 15.0Hz, J. Geophys. Res. 97, 6643–6659.Google Scholar
  21. Nishimura T., Fehler, M., Baldridge, W.S., Roberts, P. and Steck, L., 1997, Heterogeneous structure around the Jemez volcanic field, New Mexico, USA, as inferred from the envelope inversion of active-experiment seismic data. Geophys. J. Int. 131, 667–681.Google Scholar
  22. Patzwahl, R., Mechie, J., Schlze, A. and Giese, P., 1999, Two dimensional velocity models of the Nazca plate subduction zone between 19.5°S and 25°S from wide-angle seismic measurements during the CINCA'95 project, J. Geophys. Res. 104, 7293–7317.Google Scholar
  23. Pujades, L.G., Ugalde, A., Canas, J.A., Navarro, M., Badal, F.J. and Cporchete, V., 1997, Intrinsic and scattering attenuation from observed seismic codas in the Almeria Basin (southeastern Iberian Peninsula), Geophys. J. Int. 129, 281–291.Google Scholar
  24. Ruegg, J.C., Campos, J., Armijo, R., Barrietos, S., Briole, P., Thiele, R., Aracibia, M., Canuta, J., Duquesnoy, T., Chang, M., Lazo, D., Lyon-Caen, H., Ortlieb, L., Rossignol, J.C. and Serrurier, L., 1996, The Mw = 8.1 Antofagasta (North Chile) earthquake of July 30, 1995: First results from teleseismic and geodetic data, Geophys. Res. Lett. 23, 917–920.Google Scholar
  25. Sacks, I.S. and Okada, H., 1974, A comparison of the anelasticity structure beneath western south America and Japan, Phys. Earth Planet. Int. 9, 211–219.Google Scholar
  26. Sato, H., 1977, Energy propagation including scattering effect. Single isotropic scattering approximation, J. Phys. Earth 25, 27–41.Google Scholar
  27. Sato, H., 1993, Energy transportation in one and two dimensional scattered scattering media: analytic solution of the multiple isotropic scattering model, Geophys. J. Int. 112, 141–146.Google Scholar
  28. Sato, H., Nakahara, H. and Ohtake, M., 1997, Synthesis of scattered energy density for the non-spherical radiation from a point shear dislocation source based on the radiative transfer theory, Phys. Earth Planet. Int. 104, 1–13.Google Scholar
  29. Ugalde, A., Pujades, L.G., Canas, J.A. and Villasenor, A., 1998, Estimation of the intrinsic absorption and scattering attenuation in northeastern Venezuela (southeastern Carribean) using coda, Pure Appl. Geophys. 105, 685–702.Google Scholar
  30. Wessel, P. and Smith, W.H.F., 1995, New version of the Generic Mapping Tool released, EOS Trans. Amer. Geophys. U., 76, 329.Google Scholar
  31. Zeng, Y., Su, F. and Aki, K., 1991, Scattering wave energy propagation in a random isotropic scattering medium: I Theory, J. Geophys. Res. 96, 607–619.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Mitsuyuki Hoshiba
  • Andreas Rietbrock
  • Frank Scherbaum
  • Hisashi Nakahara
  • Christian Haberland

There are no affiliations available

Personalised recommendations