Journal of Aquatic Ecosystem Stress and Recovery

, Volume 8, Issue 2, pp 107–124 | Cite as

Sediment quality of North Carolina estuaries: an integrative assessment of sediment contamination, toxicity, and condition of benthic fauna

  • J.L. Hyland
  • W.L. Balthis
  • C.T. Hackney
  • M. Posey

Abstract

Sediment quality of North Carolina estuaries was evaluated using synoptic data on sediment chemistry, toxicity, and macroinfaunal community structure from 175 subtidal stations sampled during the summers of 1994–1997. The study area included Currituck, Albemarle, and Pamlico Sounds; estuarine portions of major rivers (e.g., Chowan, Roanoke, Tar-Pamlico, Neuse, New, Cape Fear); and numerous smaller tributaries and coastal embayments between the Virginia and South Carolina borders. A probabilistic sampling design permitted statistical estimation of the spatial extent of degraded versus non-degraded condition across these estuaries. Over half (54 ± 7%) of the surveyed area had high sediment quality characterized by healthy benthic assemblages and low levels of sediment contamination and toxicity. The remaining 46% showed evidence of significant stress in one or more of the above sediment-quality-triad components. While this is a sizable area, portions of it (27 ± 6%) were represented by sites with no connection between presence of stressors and adverse biological responses. Only 19% of the total area showed evidence of an impaired benthos coupled to significant pollution exposure (high sediment contamination, toxicity, or both). Impaired benthic condition was more closely linked to sediment contamination than to low dissolved oxygen (based on instantaneous oxygen measurements). The most pervasive contaminants were the metals arsenic, mercury, chromium, and nickel; the pesticides lindane, dieldrin, DDT, and DDT derivatives; and total PCBs. Degraded condition in all three components of the sediment quality triad co-occurred in <10% of the study area, suggesting that strong contaminant-induced effects on the benthos are limited to a small (yet ecologically significant) percentage of total estuarine area. The spatial extent of sediment contamination and toxicity was much less in these estuaries in comparison to other U.S. coastal regions where similar studies have been performed.

benthic communities EMAP integrative environmental assessment multiple stressors North Carolina estuaries NS&T sediment quality triad 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ASTM, 1993. Guide for conducting 10-day static sediment toxicity tests with marine and estuarine infaunal amphipods. ASTM E-1367-92. ASTM, Philadelphia, PA, 24 pp.Google Scholar
  2. Bulich, A. A., 1979. Use of luminescent bacteria for determining toxicity in aquatic environments. In: Marking, L. L. & Kimerle, R. A. (eds), Aquatic Toxicology, ASTM STP 667. ASTM, Philadelphia, PA: 98–106.Google Scholar
  3. Chapman, P. M., 1990. The sediment quality triad approach to determining pollution-induced degradation. Sci. Total Environ. 97(98): 815–825.Google Scholar
  4. Diaz, R. J. & R. Rosenberg, 1995. Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna. Ocean. & Mar. Biol.: an Ann. Rev. 33: 245–303.Google Scholar
  5. Gray, J. S., 1981. The Ecology of Marine Sediments. An Introduction to the Structure and Function of Benthic Communities. Cambridge University Press, Cambridge: 185 pp.Google Scholar
  6. Hackney, C. T., J. Grimley, M. Posey, T. Alphin & J. Hyland, 1998. Sediment contamination in North Carolina's estuaries. Publication #19 of the Center for Marine Science Research, University of North Carolina at Wilmington, Wilmington, NC, 59 pp.Google Scholar
  7. Hyland, J. L., L. Balthis, C. T. Hackney, G. McRae, A. H. Ringwood, T. R. Snoots, R. F. Van Dolah & T. L. Wade, 1998a. Environmental quality of estuaries of the Carolinian Province: 1995. NOAA Tech. Memo. NOS ORCA 123, NOAA, Silver Spring, MD.Google Scholar
  8. Hyland, J. L., T. J. Herrlinger, R. Snoots, A. H. Ringwood, R. F. Van Dolah, C. T. Hackney, G. A. Nelson, J. S. Rosen & S. A. Kokkinakis, 1996. Environmental quality of estuaries of the Carolinian Province: 1994. tNOAA Tech. Memo. NOS ORCA 97, NOAA, Silver Spring, MD.Google Scholar
  9. Hyland, J. L., T. R. Snoots & W. L. Balthis, 1998b. Sediment quality of estuaries in the southeastern U.S. Environ. Monitor. & Assess. 51: 331–343.Google Scholar
  10. Hyland, J. L., R. F. Van Dolah & T. R. Snoots, 1999. Predicting stress in benthic communities of southeastern U.S. estuaries in relation to chemical contamination of sediments. Environ. Toxicol. & Chem. 18(11): 2557–2564.Google Scholar
  11. Kohn, N. P., J. Q. Word, D. K. Niyogi, L. T. Ross, T. Dillon & D. W. Moore, 1994. Acute toxicity of ammonia to four species of marine amphipod. Mar. Environ. Res. 38: 1–15.Google Scholar
  12. Lewis, E. L. & R. G. Perkin. 1981. The practical salinity scale 1978: Conversion of existing data. Deep Sea Res. 28A(4): 307–328.Google Scholar
  13. Long, E. R, L. Field & D. D. MacDonald, 1998. Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environ. Toxicol. & Chem. 17: 714–727.Google Scholar
  14. Long, E. R., D. D. MacDonald, S. L. Smith & F. D. Calder, 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manage. 19: 81–97.Google Scholar
  15. Long, E. R. & L. G. Morgan, 1990. The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. NOAA Tech. Memo. NOS OMA 52, NOAA, Silver Spring, MD.Google Scholar
  16. Long, E. R., A. Robertson, D. A. Wolfe, J. Hameedi & G. M. Sloane, 1996. Estimates of the spatial extent of sediment toxicity in major U.S. estuaries. Environ. Sci. & Technol. 30: 3585–3592.Google Scholar
  17. Macauley, J. M., J. K. Summers & V. D. Engle, 1999. Estimating the ecological condition of the estuaries of the Gulf of Mexico. Environ. Monitor. & Assess. 57: 59–83.Google Scholar
  18. MacDonald, D. D, R. S. Carr, F. D. Calder, E. R. Long & C. G. Ingersoll, 1996. Development and evaluation of sediment quality guidelines for FL coastal waters. Ecotox. 5: 253–278.Google Scholar
  19. Microbics Corporation, 1992a. Microtox® Manual (5 volume set). Carlsbad, CA.Google Scholar
  20. Microbics Corporation, 1992b. Microtox® Update Manual. Carlsbad, CA, 128 pp.Google Scholar
  21. Paerl, H. W., J. L. Pinckney, J. M. Fear & B. L. Peierls, 1998. Ecosystem responses to internal and watershed organic matter loading: consequences for hypoxia in the eutrophying Neuse River estuary, North Carolina, USA. Mar. Ecol. Prog. Ser. 166: 17–25.Google Scholar
  22. Ringwood, A.H., M.E. DeLorenzo, P.E. Ross & A.F. Holland, 1997. Interpretation of Microtox ® solid-phase toxicity tests: The effects of sediment composition. Environ. Toxicol. & Chem. 16(6): 1135–1140.Google Scholar
  23. Ringwood, A. H. & C. Keppler, 1998. Seed clam growth: An alternative sediment bioassay developed during EMAP in the Carolinian Province. Environ. Monitor. & Assess. 51: 247–257.Google Scholar
  24. Ringwood, A. H., R. Van Dolah, A. F. Holland & M. G. Delorenzo, 1995. Year one demonstration project studies conducted in the Carolinian Province by Marine Resources Research Institute: Results and summaries. Yr. 1 Final Report under NOAA Cooperative Agreement NA470A0177, S.C. Dept. Nat. Res. (MRRI), Charleston, SC.Google Scholar
  25. Salonen, K., 1979. A versatile method for the rapid and accurate determination of carbon by high temperature combustion. Limnol. Oceanogr. 24: 177–183.Google Scholar
  26. Shannon, C. E. & W. Weaver, 1949. The Mathematical Theory of Communication. Univ. of Illinois Press, Urbana: 117 pp.Google Scholar
  27. Summers, J. K. & V. D. Engle, 1993. Evaluation of sampling strategies to characterize dissolved oxygen conditions in northern Gulf of Mexico estuaries. Environ. Monitor. and Assess. 24: 219–229.Google Scholar
  28. Taylor, B. J. & B. J. Presley, 1993. GERG trace element quantification techniques. In: Lauenstein, G.G. & Cantillo, A.Y. (eds), Sampling and Analytical Methods of the National Status and Trends Program, National Benthic Surveillance, and Mussel Watch Projects, 1984-1992. NOAA Tech. Memo. NOS ORCA 71 (Vol. III), NOAA, Silver Spring, MD: 151–186.Google Scholar
  29. U.S. EPA, 1995. Environmental Monitoring and Assessment Program (EMAP): LaboratoryMethods Manual-Estuaries, Vol. I: Biological and Physical Analyses. EPA/620/R/008, Office of Research and Development, Narragansett, RI.Google Scholar
  30. U.S. EPA, 1999. Draft Ambient Water Quality Criteria for Dissolved Oxygen (Saltwater): Cape Cod to Cape Hatteras. EPA 822-D-99-002, Office of Water (4304), Washington D.C.Google Scholar
  31. Van Dolah, R. F., J. L. Hyland, A. F. Holland, J. S. Rosen & T. R. Snoots, 1999. A benthic index of biological integrity for assessing habitat quality in estuaries of the southeastern USA. Mar. Environ. Res. 48: 269–283.Google Scholar
  32. Wade, T. L., J. M. Brooks, M. C. Kennicutt II, T. J. McDonald, J. L. Sericano & T. J. Jackson, 1993. GERG trace organics contaminant analytical techniques. In: Lauenstein, G.G. & Cantillo, A.Y. (eds), Sampling and Analytical Methods of the National Status and Trends Program, National Benthic Surveillance, and Mussel Watch Projects, 1984-1992. NOAA Tech. Memo. NOS ORCA 71 (Vol. IV), NOAA, Silver Spring, MD: 121–140.Google Scholar
  33. Wade, T. L., B. Garcia-Romero & J. M. Brooks, 1990. Butyltin in sediments and bivalves from U.S. coastal areas. Chemosphere 20: 647–662.Google Scholar
  34. Wade, T. L., D. J. Velinsky, E. Reinharz & C. E. Schekat, 1994. Tidal river sediments in theWashington, D.C. area. II. Distribution and sources of organic contaminants. Estuaries 17: 321–333.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • J.L. Hyland
    • 1
  • W.L. Balthis
    • 1
  • C.T. Hackney
    • 2
  • M. Posey
    • 2
  1. 1.NOAA, National Ocean Service (NCCOS/CCMA)CharlestonU.S.A.
  2. 2.Department of BiologyUniversity of North Carolina at WilmingtonWilmingtonU.S.A.

Personalised recommendations