Advertisement

GeoInformatica

, Volume 5, Issue 1, pp 95–115 | Cite as

Spatio-Temporal Data Handling with Constraints

  • Stéphane Grumbach
  • Philippe Rigaux
  • Luc Segoufin
Article

Abstract

Most spatial information systems are limited to a fixed dimension (generally 2) which is not extensible. On the other hand, the emerging paradigm of constraint databases allows the representation of data of arbitrary dimension, together with abstract query languages. The complexity of evaluating queries though might be costly if the dimension of the objects is really arbitrary. In this paper, we present a data model, based on linear constraints, dedicated to the representation and manipulation of multidimensional data. In order to preserve a low complexity for query evaluation, we restrict the orthographic dimension of an object O, defined as the dimension of the components O1 ,..., On such that O=O1×...× On. This allows to process queries independently on each component, therefore achieving a satisfying trade-off between design simplicity, expressive power of the query language and efficiency of query evaluation. We illustrate these concepts in the context of spatio-temporal databases where space and time are the natural components. This data model has been implemented in the DEDALE system and a spatio-temporal application, with orthographic dimension 2, is currently running, thus showing the practical relevance of the approach.

constraint databases spatial and spatio-temporal applications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Bancilhon, C. Delobel, and P. Kanellakis (Eds.) Building an Object-Oriented Database System: The Story of O2. Morgan Kaufmann: San Mateo, California, 1992.Google Scholar
  2. 2.
    A. Belussi, E. Bertino, and B. Catania. ''An extended algebra for constraint databases,'' IEEE Transactions on Knowledge and Data Engineering, Vol. 10(5):686-705, 1998.Google Scholar
  3. 3.
    A. Brodsky and V.E. Segal. ''The c3 constraint object-oriented database system: an overview,'' in Constraint Databases and Applications, Proceedings second international workshop on Constraint Databases Systems (CDB97), Lecture Notes in Computer Science, 134-159, 1997.Google Scholar
  4. 4.
    S. Chardonnel and P. Dumolard. Personal communication.Google Scholar
  5. 5.
    J. Chomicki, D.Q. Goldin, and G. Kuper. ''Variable independence and aggregation closure,'' in Proceedings ACM Symposium on Principles of Database Systems, 40-48, 1996.Google Scholar
  6. 6.
    J. Chomicki and P. Revesz. ''A geometric framework for specifying spatio-temporal objects,'' in Proceedings International Workshop on Time Representation and Reasoning, 1999.Google Scholar
  7. 7.
    M. Dumas, M.-C. Fauvet, and P.-C. Scholl. ''Handling temporal grouping and pattern-matching queries in a temporal object model,'' in Proceedings of the International Conference on Information and Knowledge Management, 424-431, 1998.Google Scholar
  8. 8.
    M. Erwig, Güting, M. Schneider, and M. Vazirgiannis. ''Spatio-temporal data types: An approach to modeling and querying moving objects in databases,'' GeoInformatica, Vol. 3(3):269-296, 1999.Google Scholar
  9. 9.
    M. Erwig, R.H. Güting, M. Schneider, and M. Vazirgiannis. ''Abstract and discrete modeling of spatiotemporal data types,'' in Proceedings of the International Symposium on Geographic Information Systems, 131-136, 1998.Google Scholar
  10. 10.
    A.U. Frank, S. Grumbach, R.H. Güting, C.S. Jensen, M. Koubarakis, N.A. Lorentzos, Y. Manolopoulos, E. Nardelli, B. Pernici, H.-J. Schek, M. Scholl, T.K. Sellis, B. Theodoulidis, and P. Widmayer. ''Chorochronos: A research network for spatiotemporal database systems,''SIGMOD Record, Vol. 28(3):12-21, 1999.Google Scholar
  11. 11.
    D. Goldin and P. Kanellakis. ''Constraint query algebras,'' Constraints, Vol. 1(1/2):45-83, 1996.Google Scholar
  12. 12.
    S. Grumbach and G. Kuper. ''Tractable recursion over geometric data,'' in International Conference on Constraint Programming, 450-462, 1997.Google Scholar
  13. 13.
    S. Grumbach, P. Rigaux, M. Scholl, and L. Segoufin. ''DEDALE: A spatial constraint database,'' in Proceedings of the International Workshop on Database Programming Languages, 38-59, 1997.Google Scholar
  14. 14.
    S. Grumbach, P. Rigaux, and L. Segoufin. ''The DEDALE system for complex spatial queries,'' in Proceedings ACM SIGMOD Symposium on the Management of Data, 213-224, 1998.Google Scholar
  15. 15.
    S. Grumbach, P. Rigaux, and L. Segoufin. ''Manipulating interpolated data is easier than you thought,'' in submitted, 1999.Google Scholar
  16. 16.
    S. Grumbach, P. Rigaux, and L. Segoufin. ''On the orthographic dimension of constraint databases,'' in Proceedings International Conference on Database Theory, 199-216, 1999.Google Scholar
  17. 17.
    S. Grumbach, J. Su, and C. Tollu. ''Linear constraint query languages: Expressive power and complexity,'' in D. Leivant (Eds.), Logic and Computational Complexity. Springer Verlag: LNCS 960. Indianapolis, 1994.Google Scholar
  18. 18.
    R.H. Güting. ''An introduction to spatial database systems,'' The VLDB Journal, Vol. 3(4): 357-399, 1994.Google Scholar
  19. 19.
    R.H. Güting and M. Schneider. ''Realm-based spatial data types: The ROSE algebra,'' The VLDB Journal,Vol. 4(3):243-286, 1995.Google Scholar
  20. 20.
    C. Jensen and M. Scholl (Eds.), Proceedings of the VLDB workshop on Spatio-Temporal Database Management, Edinburgh (Scotland), September 1999.Google Scholar
  21. 21.
    P. Kanellakis, G Kuper, and P. Revesz. ''Constraint query languages,'' Journal of Computer and System Sciences, Vol. 51(1):26-52, 1995. A shorter version appeared in PODS'90.Google Scholar
  22. 22.
    G. Kollios, D Gunopolos, and V.J. Tsotras. ''On indexing mobile objects,'' in Proceedings ACM Symposium on Principles of Database Systems, 261-272, 1999.Google Scholar
  23. 23.
    M. Koubarakis. ''The complexity of query evaluation in indefinite temporal constraint databases,'' Theoretical Computer Science, Vol. 171(1/2), 1997.Google Scholar
  24. 24.
    G. Kuper, S. Ramaswamy, K. Shim, and J. Su. ''A constraint-based spatial extension to SQL,'' in Proceedings International Symposium on Geographic Information Systems, 1998.Google Scholar
  25. 25.
    M.A. Nascimento, J.R.O. Silva, and Y. Theodoridis. ''Evaluation of access structures for discretely moving points,'' in International Workshop on Spatio-Temporal Database Management (STDBM'99), LNCS 1678, 1999.Google Scholar
  26. 26.
    J. Paredaens, J. Van den Bussche, and D. Van Gucht. ''Towards a theory of spatial database queries,'' in Proceedings 13th ACM Symposium on Principles of Database Systems, 279-288, 1994.Google Scholar
  27. 27.
    D. Pfoser and C.S. Jensen. ''Capturing the uncertainty of moving-object representations,'' in Proceedings of the International Conference on Large Spatial Databases (SSD), 111-132, 1999.Google Scholar
  28. 28.
    N. Roussopoulos, C. Faloutsos, and T. Sellis. ''An efficient pictorial database system for PSQL,'' EEE Transactions on Software Engineering, Vol. 14(5):639-650, 1988.Google Scholar
  29. 29.
    M. Scholl and A. Voisard. ''Thematic map modeling,'' in Proceedings of the International Symposium on Large Spatial Databases (SSD), LNCS No. 409, 167-192. Springer-Verlag: 1989.Google Scholar
  30. 30.
    M. Scholl and A. Voisard, (Eds.) Proceedings of the International Symposium on Large Spatial Databases (SSD). LNCS No. 1262. Springer-Verlag: 1997.Google Scholar
  31. 31.
    P.-C. Scholl, M.-C. Fauvet, and J.-F. Canavaggio. ''Un modeÁle d'historique pour un SGBD temporel,'' TSI, Vol. 17(3), mars 1998.Google Scholar
  32. 32.
    A. Schrijver. Theory of Linear and Integer Programming. Wiley: 1986.Google Scholar
  33. 33.
    A. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. ''Modeling and querying moving objects,'' in Proceedings IEEE International Conference on Data Engineering (ICDE), 422-433, 1997.Google Scholar
  34. 34.
    S. Spacapietra (Eds.) Proceedings of the DEXAWorkshop on Spatio-Temporal Data Models and Languages, Firenze (Italy), IEEE Computer Society. September 1999.Google Scholar
  35. 35.
    Y. Theodoridis, T.K. Sellis, A. Papadopoulos, and Y. Manolopoulos. ''Specifications for ef®cient indexing in spatiotemporal databases,'' in International Conference on Scientific and Statistical Database Management, 1998.Google Scholar
  36. 36.
    Y. Theodoridis, J.R.O. Silva, and M.A. Nascimento. ''On the generation of spatiotemporal datasets,'' in International Conference on Large Spatial Databases (SSD'99), 1999.Google Scholar
  37. 37.
    O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, and G. Mendez. ''Cost and imprecision in modeling the position of moving objects,'' in Proceedings IEEE International Conference on Data Engineering (ICDE), 588-596, 1998.Google Scholar
  38. 38.
    O. Wolfson, A.P. Sistla, B. Xu, J. Zhou, and S. Chamberlain. ''DOMINO: Databases for moving objects tracking,'' in Proceedings ACM SIGMOD Symposium on the Management of Data, 547-549, 1999.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Stéphane Grumbach
    • 1
  • Philippe Rigaux
    • 2
  • Luc Segoufin
    • 3
  1. 1.INRIA RocquencourtLe ChesnayFrance
  2. 2.CEDRIC lab.CNAMParis Cedex 03France
  3. 3.INRIA RocquencourtLe ChesnayFrance

Personalised recommendations