The First Subatomic Explanations of the Periodic System

  • Helge Kragh
Article

Abstract

Attempts to explain the periodic system as a manifestation of regularities in the structure of the atoms of the elements are as old as the system itself. The paper analyses some of the most important of these attempts, in particular such works that are historically connected with the recognition of the electron as a fundamental building block of all matter. The history of the periodic system, the discovery of the electron, and ideas of early atomic structure are closely interwoven and transcend the physics–chemistry boundary. It is pointed out that J. J. Thomson's discovery of the electron in 1897 included a first version of his electron atomic model and that it was used to suggest how the periodic system could be understood microphysically. Thomson's theory did not hold what it promised, but elements of it were included in Niels Bohr's first atomic model. In both cases, Thomson's and Bohr's, the periodic system played an important role, heuristically as well as justificatory.

REFERENCES

  1. N. Bohr. In: U. Hoyer (Ed.), Niels Bohr. Collected Works, Vol. 2. North-Holland, Amsterdam, 1981.Google Scholar
  2. S.G. Brush. The Reception of Mendeleev's Periodic Law in America and Britain. Isis 87: 595-628, 1996.CrossRefGoogle Scholar
  3. M. Chayut, J. J. Thomson: The Discovery of the Electron and the Chemists. Annals of Science 48: 527-544, 1991.Google Scholar
  4. E.A. Davis and I.J. Falconer. J. J. Thomson and the Discovery of the Electron. Taylor & Francis, London, 1997.Google Scholar
  5. M. Epple. Topology, Matter, and Space, I: Topological Notions in 19th-Century Natural Philosophy. Archive for History of Exact Sciences 52: 297-392, 1998.CrossRefGoogle Scholar
  6. L. Föppl. Stabile Anordnungen von Elektronen im Atom. Journal für reine und angewandte Mathematik 141: 251-302, 1912.Google Scholar
  7. I. Freund. The Study of Chemical Composition: An Account of Its Method and Historical Development. Cambridge University Press, Cambridge, 1904.Google Scholar
  8. A.E. Haas. Über Gleichgewichtlagen von Elektronengruppen in einer äquivalenten Kugel von homogener positiver Elektrizität. Sitzungsberichte der kaiserliche Akademie der Wissenschaften (Wien) IIa(120): 1111-1171, 1911.Google Scholar
  9. J.L. Heilbron. J. J. Thomson and the Bohr Atom. Physics Today (April) 30: 23-30, 1977.Google Scholar
  10. S.W. Holman. Matter, Energy, Force and Work. Macmillan, New York, NY, 1898.Google Scholar
  11. H.C. Jones. Elements of Physical Chemistry. Macmillan, New York, NY, 1907.Google Scholar
  12. W. Kaufmann. The Development of the Electron Idea. The Electrician 48: 95-97, 1901.Google Scholar
  13. Kelvin [W. Thomson]. Floating Magnets. Nature 18: 13-14, 1878.Google Scholar
  14. R.E. Kohler. The Origin of G. N. Lewis's Theory of the Shared Pair Bond. Historical Studies in the Physical Sciences 3: 343-376, 1971.Google Scholar
  15. H. Kragh. Chemical Aspects of Bohr's 1913 Theory. Journal of Chemical Education 54: 208-210, 1977.CrossRefGoogle Scholar
  16. H. Kragh. Niels Bohr's Second Atomic Theory. Historical Studies in the Physical Sciences 10: 123-186, 1979.Google Scholar
  17. H. Kragh. The Electron, the Protyle, and the Unity of Matter. In: J. Buchwald and A. Warwick (Eds.), Histories of the Electron: the Birth of Microphysics. MIT Press, Cambridge, MA, 2001.Google Scholar
  18. J. Larmor. Mathematical and Physical Papers, Vol. 1. Cambridge University Press, Cambridge, 1927.Google Scholar
  19. G.N. Lewis. Valence and the Structure of Atoms and Molecules. Dover Publications, New York, NY, 1966.Google Scholar
  20. V. Meyer. Probleme der Atomistik. Verhandlungen der Gesellschaft deutscher Naturforscher und Ärzte 67: 95-110, 1895.Google Scholar
  21. M.M. Pattison Muir. A History of Chemical Theories and Laws. John Wiley & Sons, New York, NY, 1907.Google Scholar
  22. G. Rudorf. Das periodische System: Seine Geschichte und Bedeutung für die chemische Systematik. L. Voss, Hamburg, 1904.Google Scholar
  23. E.R. Scerri. The Periodic Table and the Electron. American Scientist 85: 547-553, 1997.Google Scholar
  24. D.M. Siegel. Thomson, Maxwell, and the Universal Ether in Victorian Physics. In: G.N. Cantor and M.J.S. Hodge (Eds.), Conceptions of Ether. Cambridge University Press, Cambridge, pp. 239-268, 1981.Google Scholar
  25. D. Shapere. Scientific Theories and their Domains. In: F. Suppe (Ed.), The Structure of Scientific Theories. University of Illinois Press, Urbana, IL, pp. 518-599.Google Scholar
  26. S.B. Sinclair. J. J. Thomson and the Chemical Atom: From Ether Vortex to Atomic Decay. Ambix 34: 89-116, 1987.Google Scholar
  27. H. Snelders. A. M. Mayer's Experiments with Floating Magnets and their Use in the Atomic Theories of Matter. Annals of Science 33: 67-80, 1976.CrossRefGoogle Scholar
  28. H. Strache. Die Erklärung des periodischen Systems der Elemente mit Hilfe der Elektronentheorie. Verhandlungen der deutschen physikalischen Gesellschaft 10: 798-803, 1908.Google Scholar
  29. J.J. Thomson. A Treatise on the Motion of Vortex Rings. Macmillan, London, 1883.Google Scholar
  30. J.J. Thomson. Molecular Constitution of Bodies, Theory of. In: H.F. Morley and M.M. Pattison Muir (Eds.), Watt's Dictionary of Chemistry, Vol. 3.Macmillan, London, pp. 410-417, 1892.Google Scholar
  31. J.J. Thomson. Cathode Rays. Philosophical Magazine 44: 293-316, 1897.Google Scholar
  32. J.W. van Spronsen. The Periodic System of Chemical Elements. A History of the First Hundred Years. Elsevier, Amsterdam, 1969.Google Scholar
  33. F. Weinert (Ed.). Laws of Nature: Essays on the Philosophical, Scientific and Historical Dimensions. Walter de Gruyter, Berlin, 1995.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Helge Kragh
    • 1
  1. 1.Aarhus University, Ny MunkegadeAarhus CDenmark

Personalised recommendations