Flow, Turbulence and Combustion

, Volume 65, Issue 3–4, pp 393–415 | Cite as

An Introduction to the Adjoint Approach to Design

  • Michael B. Giles
  • Niles A. Pierce


Optimal design methods involving the solution of an adjoint system of equations are an active area of research in computational fluid dynamics, particularly for aeronautical applications. This paper presents an introduction to the subject, emphasising the simplicity of the ideas when viewed in the context of linear algebra. Detailed discussions also include the extension to p.d.e.'s, the construction of the adjoint p.d.e. and its boundary conditions, and the physical significance of the adjoint solution. The paper concludes with examples of the use of adjoint methods for optimising the design of business jets.

computational fluid dynamics adjoint p.d.e. design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, K., Newman, J., Whitfield, D. and Nielsen, E., Sensitivity analysis for the Navier-Stokes equations on unstructured grids using complex variables. AIAA Paper 99–3294 (1999).Google Scholar
  2. 2.
    Anderson, W.K. and Bonhaus, D.L., Airfoil design on unstructured grids for turbulent flows. AIAA J. 37(2) (1999) 185–191.Google Scholar
  3. 3.
    Anderson, W.K. and Venkatakrishnan, V., Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation. AIAA Paper 97–0643 (1997).Google Scholar
  4. 4.
    Baysal, O. and Eleshaky, M.E., Aerodynamic design optimization using sensitivity analysis and computational fluid dynamics. AIAA J. 30(3) (1992) 718–725.zbMATHADSGoogle Scholar
  5. 5.
    Bischof, C., Carle, A., Corliss, G., Griewank, A. and Hoveland, P., ADIFOR: Generating derivative codes from Fortran programs. Scientific Programming 1(1) (1992) 11–29.Google Scholar
  6. 6.
    Cabuk, H., Shung, C.H. and Modi, V., Adjoint operator approach to shape design for internal incompressible flow. In: Dulikravich, G.S. (ed.), Proceedings 3rd International Conference on Inverse Design and Optimization in Engineering Sciences (1991) pp.391–404.Google Scholar
  7. 7.
    Carle, C., Fagan, M. and Green, L.L., Preliminary results from the application of automated code generation to CFL3D. AIAA Paper 98–4807 (1998).Google Scholar
  8. 8.
    Dadone, A. and Grossman, B., CFD design problems using progressive optimization. AIAA Paper 99–3295 (1999).Google Scholar
  9. 9.
    Elliott, J., Aerodynamic optimization based on the Euler and Navier-Stokes equations using unstructured grids. Ph.D. Thesis, MIT, Department of Aeronautics and Astronomy (1998).Google Scholar
  10. 10.
    Elliott, J. and Peraire, J., Aerodynamic design using unstructured meshes. AIAA Paper 96–1941 (1996).Google Scholar
  11. 11.
    Elliott, J. and Peraire, J., Practical 3D aerodynamic design and optimization using unstructured meshes. AIAA J. 35(9) (1997) 1479–1485.zbMATHGoogle Scholar
  12. 12.
    Faure, C., Splitting of algebraic expressions for automatic differentiation. In: Griewank, A. (ed.), Proceedings of the Second SIAM International Workshop on Computational Differentiation. SIAM, Philadelphia, PA (1996).Google Scholar
  13. 13.
    Gilbert, J., Le Vey, G. and Masse, J., La différentiation automatique de fonctions représentées par des programmes. INRIA Rapport de Recherche 1557 (1991).Google Scholar
  14. 14.
    Giles, M.B., Analysis of the accuracy of shock-capturing in the steady quasi-1D Euler equations. Comput. Fluid Dynamics J. 5(2) (1996) 247–258.Google Scholar
  15. 15.
    Giles, M.B. and Pierce, N.A., Adjoint equations in CFD: Duality, boundary conditions and solution behaviour. AIAA Paper 97–1850 (1997).Google Scholar
  16. 16.
    Giles, M.B. and Pierce, N.A., On the properties of solutions of the adjoint Euler equations. In: Baines, M. (ed.), Numerical Methods for Fluid Dynamics VI. ICFD (1998) pp.1–16.Google Scholar
  17. 17.
    Giles, M.B. and Pierce, N.A., Improved lift and drag estimates using adjoint Euler equations. AIAA Paper 99–3293 (1999).Google Scholar
  18. 18.
    Gill, P.E., Murray, W. and Wright, M.H., Practical Optimization. Academic Press, New York (1981).zbMATHGoogle Scholar
  19. 19.
    Gill, P.E., Murray, W., Saunders, M.A. and Wright, M.H., User's Guide for NPSOL (Version 4.0). A FORTRAN Package for Nonlinear Programming. Department of Operations Research, TR SOL86–2, Stanford University, Stanford, CA (1986).Google Scholar
  20. 20.
    Griewank, A., On automatic differentiation. In: Mathematical Programming '88. Kluwer Academic Publishers, Dordrecht (1989) pp.83–108.Google Scholar
  21. 21.
    Hicks, R.M. and Henne, P.A., Wing design by numerical optimization. J. Aircraft 15 (1978) 407–412.CrossRefGoogle Scholar
  22. 22.
    Huffman, W.P., Melvin, R.G., Young, D.P., Johnson, F.T., Bussoletti, J.E., Bieterman, M.B. and Himes, C.L., Practical design and optimization in computational fluid dynamics. AIAA Paper 93–3111 (1993).Google Scholar
  23. 23.
    Newman III, J.C., Taylor III, A.C., Barnwell, R.W., Newman, P.A. and Hou, G.J.-W., Overview of sensitivity analysis and shape optimization for complex aerodynamic configurations. J. Aircraft 36(1) (1999) 87–96.Google Scholar
  24. 24.
    Jameson, A., Aerodynamic design via control theory. J. Sci. Comput. 3 (1988) 233–260.zbMATHCrossRefGoogle Scholar
  25. 25.
    Jameson, A., Optimum aerodynamic design using CFD and control theory. AIAA95–1729-CP (1995).Google Scholar
  26. 26.
    Jameson, A., Optimum aerodynamic design using control theory. In: Hafez, M. and Oshima, K. (eds), Computational Fluid Dynamics Review, Annual Book Series. John Wiley & Sons, New York (1995) pp.495–528.Google Scholar
  27. 27.
    Jameson, A., Re-engineering the design process through computation. J. Aircraft 36(1) (1999) 36–50.Google Scholar
  28. 28.
    Jameson, A., Pierce, N.A. and Martinelli, L., Optimum aerodynamic design using the Navier-Stokes equations. AIAA Paper 97–0101 (1997).Google Scholar
  29. 29.
    Korivi, V.M., Taylor III, A.C. and Hou, G.W., Sensitivity analysis, approximate analysis and design optimization for internal and external viscous flows. AIAA Paper 91–3083 (1991).Google Scholar
  30. 30.
    Lewis, J. and Agarwal, R., Airfoil design via control theory using the full-potential and Euler equations. The Forum on CFD for Design and Optimization (IMECE 95), San Francisco, CA (1995).Google Scholar
  31. 31.
    Lions, J.L., Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin (1971). Translated by S.K. Mitter.zbMATHGoogle Scholar
  32. 32.
    Mohammadi, B., Optimal shape design, reverse mode of automatic differentiation and turbulence. AIAA Paper 97–0099 (1997).Google Scholar
  33. 33.
    Mohammadi, B., Practical applications to fluid flows of automatic differentiation for design problems. VKI Lecture Series 1997–05 on Inverse Design (1997).Google Scholar
  34. 34.
    Nielsen, E. and Anderson, W.K., Aerodynamic design optimization on unstructured meshes using the Navier-Stokes equations. AIAA Paper 98–4809 (1998).Google Scholar
  35. 35.
    Pierce, N.A. and Giles, M.B., Adjoint recovery of superconvergent functionals from approximate solutions of partial differential equations. Technical Report NA98/18, Oxford University Computing Laboratory (1998).Google Scholar
  36. 36.
    Pierce, N.A. and Giles, M.B., Adjoint recovery of superconvergent functionals from PDE approximations. SIAM Rev., in press.Google Scholar
  37. 37.
    Pironneau, O., On optimum design in fluid mechanics. J. Fluid Mech. 64 (1974) 97–110.zbMATHMathSciNetCrossRefADSGoogle Scholar
  38. 38.
    Rausch, R.D., Batina, J.T. and Yang, H.T.Y., Three-dimensional time-marching aeroelastic analyses using an unstructured-grid Euler method. AIAA J. 31(9) (1993) 1626–1633.CrossRefADSGoogle Scholar
  39. 39.
    Reuther, J. and Jameson, A., Control based airfoil design using the Euler equations. AIAA Paper 94–4272-CP (1994).Google Scholar
  40. 40.
    Reuther, J., Jameson, A., Farmer, J., Martinelli, L. and Saunders, D., Aerodynamic shape optimization of complex aircraft configurations via an adjoint formulation. AIAA Paper 96–0094 (1996).Google Scholar
  41. 41.
    Reuther, J., Jameson, A., Alonso, J.J., Remlinger, M.J. and Saunders, D., Constrained multipoint aerodynamic shape optimisation using and adjoint formulation and parallel computers, Part 1. J. Aircraft 36(1) (1999) 51–60.Google Scholar
  42. 42.
    Reuther, J., Jameson, A., Alonso, J.J., Remlinger, M.J. and Saunders, D., Constrained multipoint aerodynamic shape optimisation using and adjoint formulation and parallel computers, Part 2. J. Aircraft 36(1) (1999) 61–74.Google Scholar
  43. 43.
    Squire, S. and Trapp, G., Using complex variables to estimate derivatives of real functions. SIAM Rev. 40(1) (1998) 110–112.zbMATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    Ta'asan, S., Kuruvila, G. and Salas, M.D., Aerodynamics design and optimization in one shot. AIAA Paper 92–0025 (1992).Google Scholar
  45. 45.
    Thompson, J.F., Warsi, Z.U.A. and Mastin, C.W., Numerical Grid Generation, Foundations and Applications. Elsevier, Amsterdam (1985).zbMATHGoogle Scholar
  46. 46.
    Veditti, D. and Darmofal, D., A multilevel error estimation and grid adaptive strategy for improving the accuracy of integral outputs. AIAA Paper 99–3292 (1999).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Michael B. Giles
    • 1
  • Niles A. Pierce
    • 2
  1. 1.Computing LaboratoryOxford UniversityOxfordU.K.
  2. 2.Applied MathematicsCalifornia Institute of TechnologyPasadenaU.S.A.

Personalised recommendations