Journal of Nanoparticle Research

, Volume 3, Issue 1, pp 39–50

Nanoparticle Charging in a Twin Hewitt Charger

  • F.E. Kruis
  • H. Fissan
Article

Abstract

A new unipolar charger for aerosol nanoparticles has been developed. In this twin Hewitt charger two corona discharge zones are connected by a charging zone where the nanoparticle aerosol flows. Ions move into the charging zone alternating from each corona discharging zone by means of a square-wave voltage. The operation parameters of the device have been experimentally investigated at standard conditions with the goal to optimize the extrinsic charging efficiency in N2 carrier gas. It has been found that there exists an optimal length of the charging channel for each gas flow rate through the charger which minimizes losses of charged particles and at the same time having a sufficient large niont-product. Extrinsic charging efficiencies of some 30% for particles with a diameter of 10 nm are obtained.

aerosols unipolar charger corona discharge square wave extrinsic charging efficiencies optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Büscher P., A. Schmidt-Ott & A. Wiedensohler, 1994.Performance of a unipolar square-wave diffusion charger with variable nt-product. J. Aerosol Sci. 25, 651–663.Google Scholar
  2. Chen D. & D.Y.H. Pui, 1999. A high efficiency, high throughput unipolar aerosol charger for nanoparticles. J. Nanoparticle Res. 1, 115–126.Google Scholar
  3. Chen D.R., D.Y.H. Pui, D. Hummes, H. Fissan, H. Quant & G.J. Sem, 1998. Design and evaluation of a nanometer aerosol differential mobility analyzer (Nano-DMA). J. Aerosol Sci. 29, 497–509.Google Scholar
  4. Ehrbrecht M., B. Kohn, F. Huisken, M.A. Laguna & V. Paillard, 1997. Photoluminescence and resonant Raman spectra of silicon films produced by size-selected cluster beam deposition. Phys. Rev. B 56, 6958–6964.Google Scholar
  5. Hewitt G.W., 1957. The charging of small particles for electrostatic precipitation. AIEE Trans. 76, 300–306.Google Scholar
  6. Kruis F.E., H. Fissan & A. Peled, 1998a. Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications - A review. J. Aerosol Sci. 29, 511–535.Google Scholar
  7. Kruis F.E., K. Nielsch, H. Fissan, B. Rellinghaus & E.F. Wassermann, 1998b. Preparation of size-classified PbS nanoparticles in the gas phase. Appl.Phys. Lett. 73, 547–549.Google Scholar
  8. Prost W., F.E. Kruis, F. Otten, K. Nielsch, B. Rellinghaus, U. Auer, A. Peled, E.F. Wassermann, H. Fissan & F.J. Tegude, 1998. Monodisperse aerosol particle deposition: Prospects for nanoelectronics. J. Microelect. Eng. 41/42, 535–538.Google Scholar
  9. Wiedensohler A., 1988. An approximation of the bipolar charge distribution for particles in the submicron size range. J. Aerosol Sci. 19, 387–395.Google Scholar
  10. Wiedensohler A., P. Büscher, H.-C. Hansson, B.G. Martinsson, F. Stratmann, G. Ferron & B. Busch, 1994. A novel unipolar charger for ultrafine aerosol-particles with minimal particle losses. J. Aerosol Sci. 25, 639–649.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • F.E. Kruis
    • 1
  • H. Fissan
    • 1
  1. 1.Process- and Aerosol Measurement Technology, Department of Electrical EngineeringGerhard Mercator UniversityDuisburgGermany

Personalised recommendations