Advertisement

Journal of Nanoparticle Research

, Volume 3, Issue 1, pp 63–71 | Cite as

Adhered Supported Carbon Nanotubes

  • Dale F. Johnson
  • Benjamin J. Craft
  • Stephen M. Jaffe
Article

Abstract

Carbon nanotubes (NTs) in excess of 200 μm long are grown by catalytic pyrolysis of hydrocarbon vapors. The nanotubes grow continuously without the typical extinction due to catalyst encapsulation. A woven metal mesh supports the nanotubes creating a metal supported nanotube (MSNT) structure. The 140 μm wide mesh openings are completely filled by 70 nm diameter multiwalled nanotubes (MWNTs). The MWNTs are straight, uniform and highly crystalline. Their wall thickness is about 10 nm (30 graphite layers). The adherent NTs are not removed from the support in a Scotch tape pull test. A 12.5 cm2 capacitor made from two MSNT structures immersed in 1 M KCl has a capacitance of 0.35 F and an equivalent series resistance of 0.18 Ω. Water flows through the MSNT at a flow velocity of 1 cm/min with a pressure drop of 15 inches of water. With the support removed, the MWNTs naturally form a carbon nanocomposite (CNC) paper with a specific area of 80 m2/gm, a bulk density of 0.21 g/cm3, an open pore fraction of 0.81, and a resistivity of 0.16 Ω-cm.

nanocomposites nanotubes nanoparticles adhesion flow through capacitor microfiltration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alstrup I., 1988. A new model explaining carbon filament growth on nickel, iron, and Ni-Cu alloy catalysts. J. Catal. 109, 241–251.Google Scholar
  2. 2.
    Baker R., 1990. Electron microscopy studies of the catalytic growth of carbon filaments. In: Figueiredo J., Bernardo C., Baker R. & Huttinger K. eds. Carbon Fibers Filaments and Composites, NATO ASI Series-vol 177. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 405–440.Google Scholar
  3. 3.
    Bard A. & L. Faulkner, 1980. Electrochemical Methods: Fundamentals and Applications. John Wiley & Sons, New York, pp. 249–276.Google Scholar
  4. 4.
    Cullity B., 1978. Elements of X-ray Diffraction, 2nd edn, Addison-Wiley Publishing Company, Reading MA.Google Scholar
  5. 5.
    Endo M., 1988. Grow carbon-fibers in the vapor-phase. Chemtech, 18, 568–576.Google Scholar
  6. 6.
    Figueiredo J., C. Bernardo, J. Chludzinski Jr. & R. Baker, 1988. The reversibility of filamentous carbon growth and gasification. J. Catal. 110, 127–138.Google Scholar
  7. 7.
    Figueiredo J. & C. Bernardo, 1990. Filamentous carbon formation on metals and alloys. In: Figueiredo J., Bernardo C., Baker R. & Huttinger K. eds. Carbon Fibers Filaments and Composites, NATO ASI Series-vol 177. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 441- 458.Google Scholar
  8. 8.
    Marketech International, 1991. http://www.mkt-intl.com/ aerogel.htm.Google Scholar
  9. 9.
    Niu C., E. Sichel, R. Hoch, D. Moy & H. Tennent, 1997. High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70, 1480–1482.Google Scholar
  10. 10.
    Rodriguez N., 1993. A review of catalytically grown carbon nanofibers. J. Mat. Res. 8, 3233–3250.Google Scholar
  11. 11.
    Snoeck J., G. Froment & M. Fowles, 1997a. Filamentous carbon formation and gasification: thermodynamics, driving force, nucleation, and steady-state growth. J. Catal. 169, 240–249.Google Scholar
  12. 12.
    Snoeck J., G. Froment & M. Fowles, 1997b. Kinetic study of the carbon filament formation by methane cracking on a nickel catalyst. J. Catal. 169, 250–262.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Dale F. Johnson
    • 1
  • Benjamin J. Craft
    • 1
  • Stephen M. Jaffe
    • 1
  1. 1.Material Methods LLCNewport BeachUSA

Personalised recommendations