Advertisement

Journal of Seismology

, Volume 5, Issue 3, pp 329–359 | Cite as

Surface-rupturing history of the Bree fault scarp, Roer Valley graben: Evidence for six events since the late Pleistocene

  • Kris Vanneste
  • Koen Verbeeck
  • Thierry Camelbeeck
  • Etienne Paulissen
  • Mustapha Meghraoui
  • François Renardy
  • Denis Jongmans
  • Manfred Frechen
Article

Abstract

Since 1996 paleoseismological investigations have been used to develop the surface- rupturing history of the Bree fault scarp, the morphologically best-defined segment of the southwestern border fault of the Roer Valley graben in northeastern Belgium. The first studies determined that the escarpment is associated with a surface fault, and they exposed evidence for three surface displacements since about 40 ka BP. The most recent eventprobably occurred between 1000 and 1350 yr cal BP. Geophysical and trenching studies at a new site near the southeastern end of the fault scarp reconfirmed the coincidence of the frontal escarpment with a shallow normal fault, which displaces the Middle Pleistocene `Main Terrace' of the Maas River, as well as overlying coversands of Saalian to late Weichselian age. Different amounts of displacement shown by the two youngest coversand units indicate two discrete faulting events, but primary evidence for the coseismic nature of these events is sparse. Radiocarbon and optically stimulated luminescence dating constrainthe age of these events to the Holocene and between 14.0 ± 2.3 ka BP and 15.8 ± 2.9 ka BP, respectively. In addition, four older surface-rupturing events are inferred from the presence of four wedge-shaped units of reworked Main Terrace deposits that are interbedded with coversand units in the hanging wall of the trench and in shallow boreholes. These wedges are interpreted as colluvial wedges, produced by accelerated slope processes in response torejuvenation of the fault scarp, most probably in a periglacial environment. Luminescence dating indicates that five out of a total of six identified faulting events are younger than 136.6 ± 17.6 ka. The antepenultimate event was the largest faulting event, associated with a total fault displacement in excess of 1 m. Thus, the newly investigated trench site represents the longest and most complete record of surface rupturing recovered so far along the Bree fault scarp. This study also demonstrates the viability of the paleoseismological approach to identify past large earthquakes in areas of present-day moderate to low seismic activity.

colluvial wedge coversand Feldbiss fault zone low strain rate paleoearthquake periglacial trenching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahorner, L., 1975, Present-day stress field and seismotectonic block movements along major fault zones in central Europe, Tectonophysics 29, 233–249.Google Scholar
  2. Ahorner, L., 1983, Historical seismicity and present-day microearthquake activity of the Rhenish Massif, central Europe. In: Fuchs, K. et al. (eds), Plateau Uplift, Springer-Verlag, Berlin, pp. 198–221.Google Scholar
  3. Ahorner, L., 1994, Fault-plane solutions and source parameters of the 1992 Roermond, the Netherlands, mainshock and its stronger aftershocks from regional seismic data, Geologie en Mijnbouw 73(2-4), 199–214.Google Scholar
  4. Alexandre, P., 1990, Les séismes en Europe Occidentale de 324 à 1259: Nouveau catalogue critique, Série Géophysique, Observatoire Royal de Belgique: 267 pp. (in French).Google Scholar
  5. Alexandre, P., 1994, Historical seismicity of the lower Rhine and Meuse valleys from 600 to 1525: A new critical review, Geologie en Mijnbouw 73(2-4), 431–438.Google Scholar
  6. Beerten, K., Brabers, P., Bosch, P. and Gullentops, F., 1999a, The passage of the Feldbiss Bundle through the Maas Valley, Aardkundige Mededelingen 9, 153–158.Google Scholar
  7. Beerten, K., Vandenberghe, N, Gullentops, F. and Paulissen, E., 1999b, Technisch verslag bij de Quartairkaart van België, Vlaams Gewest, kaartblad Maaseik (18), Ministerie van de Vlaamse Gemeenschap, Administratie Natuurlijke Rijkdommen en Energie, Brussel. (in Dutch).Google Scholar
  8. Briquet, A., 1908, La Meuse en aval de Sittard, Bull. Soc. belge Géol. 25, 347–385. (in French).Google Scholar
  9. Camelbeeck, T. and Meghraoui, M., 1996, Large earthquakes in northern Europe more likely than once thought, EOS, Transactions, AGU 77(42), 405, 409.Google Scholar
  10. Camelbeeck, T. and Meghraoui, M., 1998, Geological and geophysical evidence for large paleoearthquakes with surface faulting in the Roer Graben (northwest Europe), Geophys. J. Int. 132, 347–362.Google Scholar
  11. Camelbeeck, T., van Eck, T., Pelzing, R., Ahorner, L., Loohuis, L., Haak, H.W., Hoang-Trong, P. and Hollnack, T., 1994, The 1992 Roermond earthquake, the Netherlands and its aftershocks, Geologie en Mijnbouw 73(2-4), 181–197.Google Scholar
  12. Demanet, D., Renardy, F., Vanneste, K., Jongmans, D., Camelbeeck, T. and Meghraoui, M., 2001, The use of geophysical prospecting for imaging active faults in the Roer graben, Belgium, Geophysics, 66(1), 78–89.Google Scholar
  13. Demyttenaere, R. and Laga, P., 1988, Breuken-en isohypsenkaarten van het Belgisch gedeelte van de Roerdal Slenk: eerste resultaten van een seismisch onderzoek in het gebied van Poppel-Lommel-Maaseik, Professional Paper Belgische Geologische Dienst, 234: 20 pp. (in Dutch).Google Scholar
  14. Frechen, M., 1995, Lumineszenz-Datierungen der pleistozänen Tierfährten von Bottrop-Welheim, Münchner Geowiss. Abh. 27, 63–80. (in German).Google Scholar
  15. Frechen, M., 1999, Upper Pleistocene loess stratigraphy in Southern Germany, Quaternary Geochron. 18, 243–269.Google Scholar
  16. Frechen, M., Van Vliet-Lanoë, B. and Van den Haute, P., submitted, The Upper Pleistocene loess record at Harmignies/Belgium – High resolution terrestrial archive of climate forcing, J. Quaternary Sci. Google Scholar
  17. Frechen, M., Vanneste, K., Verbeeck, K., Paulissen, E. and Camelbeeck, T., in press, The deposition history of the coversands along the Bree fault escarpment, NE Belgium, Geologie en Mijnbouw.Google Scholar
  18. Gullentops, F., Paulissen, E. and Vandenberghe, J., 1981, Fossil periglacial phenomena in NE-Belgium, Biuletyn Peryglacjalny 28, 345–365.Google Scholar
  19. Gullentops, F., Janssen, J. and Paulissen, E., 1993, Saalian nivation activity in the Bosbeek valley, NE Belgium, Geologie en Mijnbouw 72, 125–130.Google Scholar
  20. Harris, C., 1988, Mechanisms of mass movement in periglacial environments. In: Anderson, M.G. and Richards, K.S. (eds), Slope Stability, John Wiley, pp. 531–559.Google Scholar
  21. Harris, C. and Lewkowicz, A.G., 1993, Form and internal structure of active-layer detachment slides, Fosheim Peninsula, Ellesmere Island, Northwest Territories, Canada, Can. J. Earth Sci. 30(8), 1708–1714.Google Scholar
  22. Kasse, C., 1997, Cold-climate aeolian sand-sheet formation in north-western Europe (c. 14–12.4 ka); a response to permafrost degradation and increased aridity, Permafrost and Periglacial Processes 8, 295–311.Google Scholar
  23. Kolstrup, E., 1980, Climate and stratigraphy in northwestern Europe between 30,000 b.p. and 13,000 b.p., with special reference to the Netherlands, Mededelingen Rijks Geologische Dienst 32(15), 181–253.Google Scholar
  24. Loke, M.H. and Barker R.D., 1996, Rapid least-squares inversion of apparent resistivity pseudosections by quasi-Newton method, Geophys. Prosp. 44, 131–152.Google Scholar
  25. McCalpin, J.P. (ed.), 1996, Paleoseismology, Academic Press, Inc., San Diego, 583 pp.Google Scholar
  26. McCalpin, J.P. and Nelson, A.R., 1996, Introduction to paleoseismology. In: McCalpin, J.P. (ed.), Paleoseismology, Academic Press, Inc., San Diego, pp. 1–32.Google Scholar
  27. Meghraoui, M., Camelbeeck, T., Vanneste, K., Brondeel, M. and Jongmans, D., 2000, Active faulting and paleoseismology along the Bree fault zone, Lower Rhine graben (Belgium), J. Geophys. Res. 105, 13,809–13,841.Google Scholar
  28. Miedema, R., 1983, Amount, characteristics and significance of clay illuviation features in Late Weichselian Meuse terraces. In: Bullock, P. and Murphy, C.P. (eds), Soil Micromorphology, Vol. II, pp. 519–530.Google Scholar
  29. Owen, G., 1987, Deformation processes in unconsolidated sands. In: Jones, M.E. and Preston, R.M.F. (eds), Deformation of Sediments and Sedimentary Rocks, Geol. Soc. Spec. Publ., 29, Oxford, pp. 11–24.Google Scholar
  30. Pantosti, D., Schwartz, D.P. and Valensise, G., 1993, Paleoseismology along the 1980 surface rupture of the Irpina fault: implications for earthquake recurrence in the southern Apennines, Italy, J. Geophys. Res. 98, 6561–6577.Google Scholar
  31. Paulissen, E., 1973, De Morfologie en de Kwartairstratigrafie van de Maasvallei in Belgisch Limburg, Verh. Kon. Acad. Wetensch., Letteren en Schone Kunsten v. België, Kl. der Wetensch. 127, 266 pp. (in Dutch).Google Scholar
  32. Paulissen, E., 1983, Les nappes alluviales et les failles quaternaires du Plateau de Campine. In: Robaszynski, F. and Dupuis, C. (eds), Guides Géologiques Régionaux: Belgique, Masson, Paris, pp. 167–170. (in French).Google Scholar
  33. Paulissen, E., 1997, Quaternary morphotectonics in the Belgian part of the Roer graben, Aardk. Med. 8, 131–134.Google Scholar
  34. Paulissen, E., Vandenberghe, J. and Gullentops, F., 1985, The Feldbiss fault in the Maas valley bottom (Limburg, Belgium), Geologie en Mijnbouw 64, 79–87.Google Scholar
  35. Rossa, H.G., 1986, Upper Cretaceous and Tertiary inversion tectonics in the western part of the Rhenish-Westphalian coal district (FRG) and in the Campine area (N. Belgium), Ann. Soc. Géol. Belgique 109, 367–410.Google Scholar
  36. Smith, W.H.F. and Wessel, P., 1990, Gridding with continuous curvature splines in tension, Geophysics 55, 293–305.Google Scholar
  37. van den Berg, M.W., Groenewoud, W., Lorenz, G.K., Lubbers, P.J., Brus, D.J. and Kroonenberg, S.B., 1994, Patterns and velocities of recent crustal movements in the Dutch part of the Roer Valley rift system, Geologie en Mijnbouw 73(2-4), 157–168.Google Scholar
  38. Vandenberghe, J., 1992, Cryoturbations: a sediment structural analysis, Permafrost and Periglacial Processes 3, 343–352.Google Scholar
  39. Vanneste, K., Meghraoui, M. and Camelbeeck, T., 1999, Late Quaternary earthquake-related soft-sediment deformation along the Belgian portion of the Feldbiss Fault, Lower Rhine Graben system, Tectonophysics 309(1-4), 57–79.Google Scholar
  40. Van Vliet-Lanoë, B., 1985, Frost effects in soils. In: Boardman, J. (eds), Soils and Quaternary Landscape Evolution, John Wiley and Sons Ltd., pp. 117–158.Google Scholar
  41. Van Vliet-Lanoë, B., Fagnart, J.P., Langohr, R., Munaut, A., 1992, Importance de la succession des phases écologiques anciennes et actuelles dans la différenciation des sols lessivés de la couverture loessique d'Europe occidentale: argumentation stratigraphique et archéologique, 1992, Science du Sol 30(2), 75–93. (in French).Google Scholar
  42. Wallace, R.E., 1977, Profiles and ages of young fault scarps, northcentral Nevada, Geol. Soc. Am. Bull. 88, 1267–1281.Google Scholar
  43. Zagwijn, W.H. and van Staalduinen, C.J., 1975, Toelichting bij Geologische Overzichtskaarten van Nederland, Rijks Geologische Dienst, Haarlem, 134 pp. + 5 maps. (in Dutch).Google Scholar
  44. Ziegler, P.A., 1994, Cenozoic rift system of western and central Europe: an overview, Geologie en Mijnbouw 73(2-4), 99–127.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Kris Vanneste
    • 1
  • Koen Verbeeck
    • 1
  • Thierry Camelbeeck
    • 1
  • Etienne Paulissen
    • 2
  • Mustapha Meghraoui
    • 3
  • François Renardy
    • 4
  • Denis Jongmans
    • 4
  • Manfred Frechen
    • 5
  1. 1.Royal Observatory of BelgiumBrusselBelgium
  2. 2.Lab voor Geomorfologie en Regionale GeografieKatholieke Universiteit LeuvenLeuvenBelgium
  3. 3.EOST – Institut de Physique du GlobeStrasbourg cedexFrance
  4. 4.LGIH, University of LiègeLiègeBelgium
  5. 5.Centre for Environmental Change & Quaternary ResearchGEMRUCheltenhamU.K.

Personalised recommendations