Journal of Nanoparticle Research

, Volume 3, Issue 1, pp 27–37

New Design for Quantum Dots Cellular Automata to obtain Fault Tolerant Logic Gates

  • Amir Fijany
  • Benny N. Toomarian

DOI: 10.1023/A:1011415529354

Cite this article as:
Fijany, A. & Toomarian, B.N. Journal of Nanoparticle Research (2001) 3: 27. doi:10.1023/A:1011415529354


In this paper, we analyze fault tolerance properties of the Majority Gate, as the main logic gate for implementation with Quantum dots Cellular Automata (QCA), in terms of fabrication defect. Our results demonstrate the poor fault tolerance properties of the conventional design of Majority Gate and thus the difficulty in its practical application. We propose a new approach to the design of QCA-based Majority Gate by considering two-dimensional arrays of QCA cells rather than a single cell for the design of such a gate. We analyze fault tolerance properties of such Block Majority Gates in terms of inputs misalignment and irregularity and defect (missing cells) in assembly of the array. We present simulation results based on semiconductor implementation of QCA with an intermediate dimensional dot of about 5 nm in size as opposed to magnetic dots of greater than 100 nm or molecular dots of 2–5Å. Our results clearly demonstrate the superior fault tolerance properties of the Block Majority Gate and its greater potential for a practical realization. We also show the possibility of designing fault tolerant QCA circuits by using Block Majority Gates.

Quantum dots based computing Quantum dots Cellular Automata quantum dots logic gates fault tolerant logic gates Majority Gate 

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Amir Fijany
    • 1
  • Benny N. Toomarian
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations