Algebras and Representation Theory

, Volume 4, Issue 3, pp 293–304

Multiplicative Invariants and Semigroup Algebras

  • Martin Lorenz
Article
  • 38 Downloads

Abstract

Let G be a finite group acting by automorphism on a lattice A, and hence on the group algebra S=k[A]. The algebra of G-invariants in S is called an algebra of multiplicative invariants. We present an explicit version of a result of Farkas stating that multiplicative invariants of finite reflection groups are semigroup algebras.

semigroup algebra group action invariant theory reflection group root system class groups 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bourbaki, N.: Groupes et algèbres de Lie, chap. 4-6, Hermann, Paris, 1968.Google Scholar
  2. 2.
    Bruns, W. and Herzog, J.: Cohen-Macaulay Rings, Cambridge Univ. Press, Cambridge, 1993.Google Scholar
  3. 3.
    Farkas, D. R.: Multiplicative invariants, Enseign. Math. 30 (1984), 141-157.Google Scholar
  4. 4.
    Farkas, D. R.: Reflection groups and multiplicative invariants, RockyMt. J. 16 (1986), 215-222.Google Scholar
  5. 5.
    Farkas, D. R.: Toward multiplicative invariant theory, In: S. Montgomery (ed.), Group Actions on Rings, Contemp. Math. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 9-80.Google Scholar
  6. 6.
    Gilmer, R.: Commutative Semigroup Rings, Chicago Lectures in Math., Univ. Chicago Press, Chicago, 1984.Google Scholar
  7. 7.
    Gubeladze, J.: Anderson's conjecture and the maximal monoid class over which projective modules are free, Math. USSR Sb. 63 (1989), 165-180.Google Scholar
  8. 8.
    Gubeladze, J.: The elementary action on unimodular rows over a monoid ring, J. Algebra 148 (1992), 135-161.Google Scholar
  9. 9.
    Hochster, M.: Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. 96 (1972), 318-337.Google Scholar
  10. 10.
    Humphreys, J. E.: Reflection Groups and Coxeter Groups, Cambridge Univ. Press, Cambridge, 1990.Google Scholar
  11. 11.
    Lemire, N.: Multiplicative Invariants, PhD thesis, University of Alberta, Edmonton, 1998.Google Scholar
  12. 12.
    Lorenz, M.: Class groups of multiplicative invariants, J. Algebra 177 (1995), 242-254.Google Scholar
  13. 13.
    Lorenz, M.: Regularity of multiplicative invariants, Comm. Algebra 24 (1996), 1051-1055.Google Scholar
  14. 14.
    Lorenz, M.: Picard groups of multiplicative invariants, Comment. Math. Helv. 72 (1997), 389-399.Google Scholar
  15. 15.
    Schönert, M., et al.: GAP-Groups, Algorithms and Programming, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, fifth edn, 1995; available from http://www-gap.dcs.st-and.ac.uk/~gap/.Google Scholar
  16. 16.
    Steinberg, R.: On a theorem of Pittie, Topology 14 (1975), 173-177.Google Scholar
  17. 17.
    Sturmfels, B.: Gröbner Bases and Convex Polytopes, Univ. Lecture Ser. 8, Amer.Math. Soc., Providence, RI, 1996.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Martin Lorenz
    • 1
  1. 1.Department of MathematicsTemple UniversityPhiladelphiaUSA e-mail

Personalised recommendations