Partial CO2 Rebreathing Indirect Fick Technique for Non-Invasive Measurement of Cardiac Output

  • Dinesh G. Haryadi
  • Joseph A. Orr
  • Kai Kuck
  • Scott McJames
  • Dwayne R. Westenskow
Article

Abstract

Objective.Evaluation in animals of a non-invasive and continuous cardiac output monitoring system based on partial carbon-dioxide (CO2) rebreathing indirect Fick technique. Methods.We have developed a non-invasive cardiac output (NICO) monitoring system, based on the partial rebreathing method. The partial rebreathing technique employs a differential form of the Fick equation for calculating cardiac output (QT) using non-invasive measurements. Changes in CO2 elimination (ΔVCO2) and partial pressure of end-tidal CO2 (Δ PETCO2) in response to a brief period of partial rebreathing are used to measure pulmonary capillary blood flow (QPCBF). A non-invasive estimate of anatomic and intrapulmonary shunt fraction (QS/QT), based on oxygen saturation from pulse oximetry (SpO2) and inspired oxygen concentration (FIO2), is added to compute total cardiac output [QT=QPCBF/(1−QS/QT)]. The performance of the NICO was compared with iced 5% dextrose bolus thermodilution cardiac output (TDco) measurements in 6 dogs. Cardiac output was varied using dobutamine, and halothane, and by clamping of the inferior vena cava. Two hundred and forty-six (n = 246) paired measurements of TDco and NICO over a range of cardiac outputs (TDco range = 0.60–8.87 l/min) were compared using Bland-Altman analysis and weighted correlation coefficient. Results.The Bland–Altman technique yielded a NICO precision of ±  0.70 l/min (13.8%) with a mean bias of −0.07 l/min (−1.4%) compared to TDco. The weighted correlation coefficient between TDco and NICO values was: r= 0.93 (n= 246). Conclusion.The partial CO2 rebreathing technique for measurement of cardiac output is non-invasive, automated, and based on the well accepted Fick principle. The limits of agreement between NICO and TDco is within the recommended value for NICO to be a clinically acceptable method for cardiac output measurement. The results of this canine study show that NICO performed as well, and in some cases better, than other currently available non-invasive cardiac output techniques over a wide range of cardiac outputs.

Cardiac output partial rebreathing NICO carbon dioxide non-invasive monitoring thermodilution cardiac output 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Ganz W, Swan HJ. Measurement of blood £ow by thermo-dilution. AmJ Cardiol 1972; 29 (2): 241–246CrossRefGoogle Scholar
  2. 2.
    Levett JM, Replogle RL. Thermodilution cardiac out-put: A critical analysis and review of the literature. J Surg Res 1979; 27 (6): 392–404PubMedCrossRefGoogle Scholar
  3. 3.
    Nishikawa T, Dohi S. Errors in the measurement of cardiac output by thermodilution. Can J Anaesth 1993; 40 (2): 142–153PubMedCrossRefGoogle Scholar
  4. 4.
    Sola JE, Bender JS. Use of the pulmonary artery catheter to reduce operative complications. Surgical Clinic of North America 1993; 73 (2): 253–264Google Scholar
  5. 5.
    Connors AF Jr, Speroff T, Dawson NV et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. JAMA 1996; 276 (11): 889–97PubMedCrossRefGoogle Scholar
  6. 6.
    Dalen JE, Bone RC. Is it time to pull the pulmonary artery catheter? JAMA 1996 Sep 18; 276 (11): 916–918PubMedCrossRefGoogle Scholar
  7. 7.
    Fick A. The Measurement of CardiacVentricular Output (in German). Phys Med Ges 1870; 16: XVI (Translated in Geddes LA, Reference 8)Google Scholar
  8. 8.
    Geddes LA. Cardiovascular devices and their applications. 1st Edition. New York: John Wiley & Sons, 1984: 182–183Google Scholar
  9. 9.
    Collier CR. Determination of mixed venous CO2 tensions by rebreathing. J Appl Physiol 1956; 9: 25–29PubMedGoogle Scholar
  10. 10.
    Cerretelli P, Cruz JC, Farhi LE, Rahn H. Determination of mixed venous O2 and CO2 tensions and cardiac output by rebreathing method. Respir Physiol 1966; 1: 258–264PubMedCrossRefGoogle Scholar
  11. 11.
    Franciosa JA. Evaluation of the CO2 rebreathing cardiac output method in seriously ill patients. Circulation 1977; 55: 449–455PubMedGoogle Scholar
  12. 12.
    Orr JA, Westenskow D, Kofoed S, Turner R. Evaluation of a system to measure CO2 production. J Clin Monit 1996; 12 (6): 471–472Google Scholar
  13. 13.
    Capek JM, Roy RJ. Fick Techniques. 1302–1314. In: Webster JG (ed): Encyclopedia of medical devices and instrumentation, vol. 2. New York: John Wiley and Sons, 1988Google Scholar
  14. 14.
    Gedeon A, Forslund L, Hedenstierna G, Romano E. A new method for non-invasive bedside determination of pulmonary blood flow. Med Biol Eng Comput 1980; 18: 411–418PubMedGoogle Scholar
  15. 15.
    Gedeon A. Non-invasive pulmonary blood flow for optimal PEEP. Clin Physiol 1985; 5 (3): 49–58PubMedGoogle Scholar
  16. 16.
    Roy RJ, Capek J. Non-invasive cardiac output monitoring using partial CO2 rebreathing. Anesthesiol 1985; 63 (3A): A172Google Scholar
  17. 17.
    Capek JM, Roy RJ. Non-invasive measurement of cardiac output using partial CO2 rebreathing. IEEE Trans BME 1988; 35 (9): 653–661Google Scholar
  18. 18.
    Nunn JF. Nunn's applied respiratory physiology, 4th edition. Oxford: Butterworth-Heinemann, 1993Google Scholar
  19. 19.
    Severinghaus JW. Simple, accurate equations for human blood O2 dissociation computations. J Appl Physiol 1979; 46: 599–602PubMedGoogle Scholar
  20. 20.
    Lobdell DD. An invertible simple equation for computation of blood O2 dissociation relations. J Appl Physiol 1981; 50 (5): 971–3PubMedGoogle Scholar
  21. 21.
    Haryadi DG, Orr JA, Kuck K, Jaffe MB. Methods of non-invasively estimating intrapulmonary shunt fraction and measuring cardiac output. US Patent no. 6,042,550, 2000Google Scholar
  22. 22.
    Farhi LE, Herman R. Dynamics of changes in carbon dioxide stores. Anesthesiol 1960; 21 (6): 604–14CrossRefGoogle Scholar
  23. 23.
    Mathews CM, Laszlo G, Campbell EJ, Read DJ. A model for the distribution and transport of CO2 in the body and the ventilatory response to CO2. Respir Physiol 1968; 6: 45–87CrossRefGoogle Scholar
  24. 24.
    Jaffe MB. Partial CO2 rebreathing cardiac output — operating principles of the NICOTM system. J Clin Monit 1999; 15: 387–401CrossRefGoogle Scholar
  25. 25.
    Williams JE, Pfau SE, Deckelbaum LI. Effect of injectate temperature and thermistor position on reproducibility of thermodilution cardiac output determinations. Chest 1994; 106: 895–898PubMedGoogle Scholar
  26. 26.
    Haryadi DG, Orr JA, McJames S, Westenskow DR. Measurement of injectate temperature at right atrial port improves accuracy of thermodilution cardiac output. J Clin Monit 1998; 14: 518–519Google Scholar
  27. 27.
    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical assessment. Lancet 1986; 2: 307–310Google Scholar
  28. 28.
    Bland JM, Altman DG. Calculating correlation coe¤cients with repeated observations: Part 1 — correlation within subjects. BMJ 1995; 310: 446PubMedGoogle Scholar
  29. 29.
    Bland JM, Altman DG. Calculating correlation coe¤cients with repeated observations: Part 2 — correlation between subjects. BMJ 1995; 310: 633PubMedGoogle Scholar
  30. 30.
    Critchley LAH, Critchley JAJH. A meta-analysis of bias and precision statistics to compare cardiac output measurement techniques. J ClinMonit 1999; 15: 85–91Google Scholar
  31. 31.
    Heigenhauser GJF, Jones NL. Measurement of cardiac output by carbon dioxide rebreathing methods. Clin ChestMed 1989; 10 (2): 255–264Google Scholar
  32. 32.
    Blomqvist H, Frostell C, Hedenstrierna G. A Non-invasive technique for measurement of lung perfusion. Intens CareMed 1986; 12: 172Google Scholar
  33. 33.
    Capek JM. Noninvasive measurement of cardiac output using partial carbon dioxide rebreathing. 1988 PhD Dissertation. Rensselaer Polytechnic Institute, Troy, New York, U.S.A.Google Scholar
  34. 34.
    Bosman RJ, Stoutenbeek ChP, Zandstra DF. Non-invasive pulmonary blood £ow measurement by means of CO2 analysis of expiratory gases. Intens Care Med 1991; 17 (2): 98–102CrossRefGoogle Scholar
  35. 35.
    Gedeon A, Krill P, Kristensen J, Gottlieb I. Non-invasive cardiac output determined with a new method based on gas exchange measurements and carbon dioxide rebreathing: A study in animals/pigs. J Clin Monit 1992; 8 (4): 267–278PubMedCrossRefGoogle Scholar
  36. 36.
    Osterlund B, Gedeon A, Krill P et al. A new method of using gas exchange measurements for the non-invasive determination of cardiac output: Clinical experiences in adults following cardiac surgery. Acta Anaesthesiol Scand 1995; 39: 727–32PubMedCrossRefGoogle Scholar
  37. 37.
    Gama De Abreu M. Prediction of ARDS and MOF in critically ill patients and Reliability of the partial CO2 rebreathing technique for measurement of cardiac output. 1995 Dissertation, Ruprecht-Karls-Universitat, HeidelbergGoogle Scholar
  38. 38.
    Orr JA, Kofoed S, Westenskow D, Turner R. A non-invasive cardiac output system using the partial rebreathing Fick method. J ClinMonit 1996; 12 (6): 464–465Google Scholar
  39. 39.
    Gama de Abreu M, Quintel M, Ragaller M, Albrecht DM. Partial carbon dioxide rebreathing: A reliable technique for non-invasive measurement of nonshunted pulmonary capillary blood flow. Crit Care Med 1997; 25 (4): 675–683CrossRefGoogle Scholar
  40. 40.
    Orr JA, Westenskow DR, Haryadi DG, Kofoed S. Evaluation of partial re-breathing cardiac output measurement in animals. J Clin Monit 1998; 14: 527–528Google Scholar
  41. 41.
    Bailey PL, Haryadi DG, Orr JA, Westenskow DR. Partial CO2 rebreathing Fick technique for non-invasive measurement of cardiac output. Anesth Analg 1998; 86, SCA53Google Scholar
  42. 42.
    Haryadi DG, Orr JA, Kuck K, McJames S, Westenskow DR. Evaluation of partial CO2 rebreathing Fick technique for measurement of cardiac output. Anesthesiol 1998; 89 (3A): A534CrossRefGoogle Scholar
  43. 43.
    Johnson KB, Haryadi DG, Orr JA, McJames S, Kuck K, Westenskow DR. Influence of pulmonary edema on non-invasive measurements of cardiac output using partial CO2 rebreathing in a canine model. Anesthesiol 1998; 89 (3A): A535CrossRefGoogle Scholar
  44. 44.
    Watt RC, Loeb RG, Orr JA. Comparison of a new non-invasive cardiac output technique with invasive bolus and continuous thermodilution. Anesthesiol 1998; 89 (3A): A536CrossRefGoogle Scholar
  45. 45.
    Kuck K, Haryadi DG, Orr JA, Bailey PL. Evaluation of partial rebreathing cardiac output measurement during surgery. Anesthesiol 1998; 89 (3A): A542CrossRefGoogle Scholar
  46. 46.
    Guzzi L, Jaffe MB, Orr JA. Clinical evaluation of a new noninvasive method of cardiac output measurement — preliminary results in CABG patient. Anesthesiol 1998; 89: A543CrossRefGoogle Scholar
  47. 47.
    Jopling MW. Noninvasive cardiac output determination utilizing the method of partial CO2 rebreathing. A comparison with continuous and bolus thermodilution cardiac output. Anesthesiol 1998; 89: A544CrossRefGoogle Scholar
  48. 48.
    Orr JA, Kuck K, Haryadi DG, Jaffe MB. Clinical validation of a new non-invasive breath to breath Fick method for cardiac output estimation. J Clin Monit 1999; 15 (3–4): 241–242Google Scholar
  49. 49.
    Haryadi DG, Bailey PL, Kuck K, Orr JA, Westenskow DR. Clinical evaluation of partial CO2 rebreathing Fick technique for non-invasive measurement of cardiac out-put. J Clin Monit 1999; 15 (3–4): 255–256Google Scholar
  50. 50.
    Loeb RG, Watt RC, DiNardo JA, Orr J. Comparison of non-invasive, partial rebreathing cardiac output with invasive bolus and continuous thermodilution. J Clin Monit 1999; 15 (3–4): 259–260Google Scholar
  51. 51.
    Haryadi DG, Kuck K, Orr JA, Westenskow DR. Reliability of invasive versus non-invasive indices in reflecting intrapulmonary shunt. Crit Care Med 1999; 27 (1, Suppl): A116CrossRefGoogle Scholar
  52. 52.
    Haryadi DG, Orr JA, Johnson KB, Kuck K, Westenskow DR. Influence of error in estimation of intrapulmonary shunt on the measurement of cardiac output using re-breathing techniques. J Clin Monit 1999; 15 (3–4): 256–257Google Scholar
  53. 53.
    Kuck K, Haryadi DG, Orr JA, Westenskow DR, Jaffe MB. Haryadi et al: Partial CO2 Rebreathing Fick CardiacOutput 373 Arterial blood gas measurements improve non-invasive cardiac output estimates from partial CO2 rebreathing Fick technique. Crit Care Med 1999; 27 (1, Suppl): A109CrossRefGoogle Scholar
  54. 54.
    Haryadi DG, Orr JA, Kuck K, Westenskow DR. Limited reproducibility of thermodilution hampers evaluation of new cardiac output monitoring devices. J Clin Monit 1999; 15 (3–4): 255Google Scholar
  55. 55.
    Orr JA, Westenskow DR. Anesthesiol 1997; 87 (3A): A427CrossRefGoogle Scholar
  56. 56.
    Haller M, Zollner C, Briegel J, Forst H. Evaluation of a new continuous thermodilution cardiac output monitor in critically ill patients: A prospective criterion standard study. Crit Care Med 1995; 23 (5): 860–866PubMedCrossRefGoogle Scholar
  57. 57.
    Comroe JH. The lung, 2nd edition. Chicago: Year Book Medical Publishers, 1962.Google Scholar
  58. 58.
    West JB. Ventilation-perfusion inequality and overall gas exchange in computer models of the lung. Respir Physiol 1969; 7: 88–110PubMedCrossRefGoogle Scholar
  59. 59.
    Fowler WS. Lung Function Studies II, The Respiratory Dead Space. AmJ Physiol 1948; 154: 405Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Dinesh G. Haryadi
    • 1
  • Joseph A. Orr
    • 1
  • Kai Kuck
    • 1
  • Scott McJames
    • 1
  • Dwayne R. Westenskow
    • 1
  1. 1.Departments of Anesthesiology and BioengineeringUniversity of UtahSalt Lake CityU.S.A.

Personalised recommendations