Foundations of Science

, Volume 6, Issue 1–3, pp 163–233

The Construction of ‘Reality’ in the Robot: Constructivist Perspectives on Situated Artificial Intelligence and Adaptive Robotics

  • Tom Ziemke
Article

Abstract

This paper discusses different approaches incognitive science and artificial intelligenceresearch from the perspective of radicalconstructivism, addressing especially theirrelation to the biologically based theories ofvon Uexküll, Piaget as well as Maturana andVarela. In particular recent work in ‘New AI’ and adaptive robotics on situated and embodiedintelligence is examined, and we discuss indetail the role of constructive processes asthe basis of situatedness in both robots andliving organisms.

adaptive robotics artificial intelligence embodied cognition radical constructivism situatedness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Andersen, P.B., P. Hasle and P.A. Brandt: 1997, Machine Semiosis. In R. Posner, K. Robering and T.A. Sebeok (eds.), Semiotik / Semiotics – Ein Handbuch zu den zeichentheoretischen Grundlagen von Natur und Kultur / A Handbook on the Sign-Theoretic Foundations of Nature and Culture. Berlin / New York: Walter de Gruyter, 548–571.Google Scholar
  2. Beer, R.D.: 1995, A Dynamical Systems Perspective on Autonomous Agents. Artificial Intelligence 72: 173–215.Google Scholar
  3. Bickhard, M.H.: 1998, Robots and Representations. In From Animals to Animats 5 – Proceedings of the Fifth International Conference on Simulation of Adaptive Behavior. Cambridge, MA: MIT Press, 58–63.Google Scholar
  4. Bickhard, M.H. and L. Terveen: 1995, Foundational Issues in Artificial Intelligence and Cognitive Science – Impasse and Solution. New York, NY: Elsevier.Google Scholar
  5. Braitenberg, V.: 1984, Vehicles: Experiments in Synthetic Psychology. Cambridge, MA: MIT Press.Google Scholar
  6. Brooks, R.A.: 1986a, Achieving Artificial Intelligence through Building Robots. Technical Report Memo 899, MIT AI Lab.Google Scholar
  7. Brooks, R.A.: 1986b, A Robust Layered Control System for a Mobile Robot. IEEE Journal of Robotics and Automation 2: 14–23.Google Scholar
  8. Brooks, R.A.: 1990, Elephants Don't Play Chess. Robotics and Autonomous Systems 6(1–2): 1–16.Google Scholar
  9. Brooks, R.A.: 1991a, Intelligence Without Representation. Artificial Intelligence 47: 139–159.Google Scholar
  10. Brooks, R.A.: 1991b, Intelligence Without Reason. In Proceedings of the Twelfth International Joint Conference on Artificial Intelligence. San Mateo, CA: Morgan Kaufmann, 569–595.Google Scholar
  11. Cariani, P.: 1992, Some Epistemological Implications of Devices Which Construct Their Own Sensors and Effectors. In F.J. Varela and P. Bourgine (eds.), Toward a Practice of Autonomous Systems – Proceedings of the First European Conference on Artificial Life. Cambridge, MA: MIT Press, 484–493.Google Scholar
  12. Clancey, W.J.: 1997, Situated Cognition: On Human Knowledge and Computer Representations. New York: Cambridge University Press.Google Scholar
  13. Clark, A.: 1997, Being There – Putting Brain, Body and World Together Again. Cambridge, MA: MIT Press.Google Scholar
  14. Cliff, D.T.: 1991, Computational Neuroethology: A Provisional Manifesto. In J.-A. Meyer and S.W. Wilson (eds.), From Animals to Animats. Cambridge, MA: MIT Press, 29–39.Google Scholar
  15. Cliff, D.T. and G.F. Miller: 1996, Co-evolution of Pursuit and Eevasion II: Simulation Methods and Results. In P. Maes, M. Mataric, J.-A. Meyer, J.B. Pollack and S.W. Wilson (eds.), From Animals to Animats 4 – Proceedings of the Fourth InternationalConference on Simulation of Adaptive Behavior. Cambridge, MA: MIT Press, 506–515.Google Scholar
  16. Craik, K.J.W.: 1943, The Nature of Explanation. Cambridge, UK: Cambridge University Press.Google Scholar
  17. Dorffner, G.: 1997, Radical Connectionism – a Neural Bottom-up Approach to AI. In G. Dorffner (ed.), Neural Networks and a New Artificial Intelligence. London, UK: International Thomson Computer Press, 93–132.Google Scholar
  18. Dreyfus, H.L.: 1979, What Computers Can't Do – A Critique of Artificial Reason (revised edition). New York: Harper & Row.Google Scholar
  19. Dreyfus, H.L.: 1996, The Current Relevance of Merleau-Ponty's Phenomenology of Embodiment. The Electronic Journal of Analytic Philosophy, 4. Originally appeared in H. Haber and G. Weiss (eds.), Perspectives on Embodiment. New York: Routledge.Google Scholar
  20. Driesch, H.: 1931, Das Wesen des Organismus. Leipzig, Germany.Google Scholar
  21. Elman, J.: 1990, Finding Structure in Time. Cognitive Science 14: 179–211.Google Scholar
  22. Emmeche, C.: 1990, Kognition og omverden – om Jakob von Uexküll og hans bidrag til kognitionsforskningen. Almen Semiotik 2: 52–67.Google Scholar
  23. Emmeche, C.: 1992, Life as an Abstract Phenomenon: Is Artificial Life Possible? In F.J. Varela and P. Bourgine (eds.), Toward a Practice of Autonomous Systems – Proceedings of the First European Conference on Artificial Life. Cambridge, MA: MIT Press, 466–474.Google Scholar
  24. Emmeche, C.: in press, Does a Robot Have an Umwelt? Reflections on the Qualitative Biosemiotics of Jakob von Uexküll. Semiotica, special issue on the work of Jakob von Uexküll, to appear in 2001.Google Scholar
  25. Fodor, J.A.: 1987, Psychosemantics. Cambridge, MA: MIT Press.Google Scholar
  26. Franklin, S.: 1995, Artificial Minds. Cambridge, MA: MIT Press.Google Scholar
  27. Franklin, S.: 1997, Autonomous Agents as Embodied AI. Cybernetics and Systems 28(6): 499–520.Google Scholar
  28. Funes, P. and J.B. Pollack: 1997, Computer Evolution of Buildable Objects. In Proceedings of the Fourth European Conference on Artificial Life. Cambridge, MA: MIT Press, 358–367.Google Scholar
  29. Hallam, J.C. and C.A. Malcolm: 1994, Behaviour: Perception, Action and Intelligence – The View from Situated Robotics. Proc. Royal Society Land A 349: 29–42.Google Scholar
  30. Harnad, S.: 1990, The symbol grounding problem. Physica D 42: 335–346.Google Scholar
  31. Heidegger: 1962, Being and Time. New York: Harper & Row. Originally appeared as Heidegger, M. (1927). Sein und Zeit. Tübingen, Germany.Google Scholar
  32. Hendriks-Jansen, H.: 1996, Catching Ourselves in the Act – Situated Activity, Interactive Emergence, Evolution, and Human Thought. Cambridge, MA: MIT Press.Google Scholar
  33. Hoffmeyer, J.: 1996, Signs of Meaning in the Universe. Bloomington: Indiana University Press.Google Scholar
  34. Husbands, P., I. Harvey and D. Cliff: 1993, An EvolutionaryApproach to Situated AI. In A. Sloman, D. Hogg, G. Humphreys, A. Ramsay and D. Partridge (eds.), Prospects for Artificial Intelligence. Amsterdam: IOS Press, 61–70.Google Scholar
  35. Husbands, P., T. Smith, N. Jakobi and M. O'shea: 1998, Better Living Through Chemistry: Evolving GasNets for Robot Control. Connection Science, 10(3–4): 185–210.Google Scholar
  36. Johnson-Laird, P.N.: 1989, Mental Models. In M.I. Posner (ed.), Foundations of Cognitive Science. Cambridge, MA: MIT Press.Google Scholar
  37. Kant, I.: 1781/7, Kritik der reinen Vernunft. In Kants Werke, Akademieausgabe, Vol. IV, Berlin.Google Scholar
  38. Lakoff, G.: 1988, Smolensky, Semantics, and the Sensorimotor System. Behavioral and Brain Sciences 11: 39–40.Google Scholar
  39. Langthaler, R.: 1992, Organismus und Umwelt – Die biologische Umweltlehre im Spiegel traditioneller Naturphilosophie. Hildesheim, Germany: Georg Olms Verlag.Google Scholar
  40. Lenat, D. and E.P. Feigenbaum: 1991, On the Thresholds of Knowledge. Artificial Intelligence 47(1–3): 199.Google Scholar
  41. Loren, L.A. and E. Dietrich: 1997, Merleau-Ponty, Embodied Cognition and the Problem of Intentionality. Cybernetics and Systems 28: 345–358.Google Scholar
  42. Lorenz, K.: 1957, The Nature of Instinct: The Conception of Instinctive Behavior. In C.H. Schiller (ed.), Instinctive Behavior – The Development of a Modern Concept. New York: International Universities Press, 129–175. Originally appeared as K. Lorenz: 1937, Ñber die Bildung des Instinktbegriffes, Die Naturwissenschaften 25: 289–300, 307–318, 324–331.Google Scholar
  43. Lipson, H. and J.B. Pollack: 2000, Evolution of Machines. In Proceedings of the International Conference on Artificial Intelligence in Design. Worchester, MA.Google Scholar
  44. Lund, H.H., J. Hallam and W. Lee: 1997, Evolving Robot Morphology. In Proceedings of the IEEE Fourth International Conference on Evolutionary Computation. IEEE Press.Google Scholar
  45. Lund, H.H. and O. Miglino: 1998, Evolving and Breeding Robots. In Proceedings of the First European Workshop on Evolutionary Robotics. Berlin/Heidelberg, Germany: Springer Verlag.Google Scholar
  46. Manteuffel, G.: 1992, Konstruktivistische künstliche Intelligenz. In S.J. Schmidt (ed.), Kognition und Gesellschaft – Der Diskurs des Radikalen Konstruktivismus 2. Frankfurt a. M., Germany: Suhrkamp Verlag.Google Scholar
  47. Maturana, H.R. and F.J. Varela: 1980, Autopoiesis and Cognition – The Realization of the Living. Dordrecht, The Netherlands: D. Reidel Publishing.Google Scholar
  48. Maturana, H.R. and F.J. Varela: 1987, The Tree of Knowledge – The Biological Roots of Human Understanding. Shambhala, Boston, MA. NB: All page numbers refer to the revised edition of 1992.Google Scholar
  49. Meeden, L.A.: 1996, An Incremental Approach to Developing Intelligent Neural Network Controllers for Robots. IEEE Transactions on Systems, Man, and Cybernetics 26.Google Scholar
  50. Meeden, L.A., G. McGraw and D. Blank: 1993, Emergence of Control and Planning in an AutonomousVehicle. In Proceedings of the Fifteenth Annual Meeting of the Cognitive Science Society. Hillsdale, NJ: Lawrence Erlbaum, 735–740.Google Scholar
  51. Merleau-Ponty, M.: 1962, Phenomenology of Perception. London: Routledge & Kegan Paul. Originally appeared as Merleau-Ponty (1945) Phenomenologie de la Perception, Paris: Gallimard.Google Scholar
  52. Merleau-Ponty, M.: 1963, The Structure of Behavior. Boston, MA: Beacon Press. Originally appeared as Merleau-Ponty (1942) La Structure du Comportment, Presses Universites de France.Google Scholar
  53. Minsky, M.: 1975, A Framework for Representing Knowledge. In P. Winston (ed.), The Psychology of Computer Vision. McGraw-Hill, 211–277.Google Scholar
  54. Mondada, F., E. Franzi and P. Ienne: 1993, Mobile Robot Miniaturisation: A Tool for Investigating in Control Algorithms. In Third International Symposium on Experimental Robotics, Kyoto, Japan.Google Scholar
  55. Müller, J.: 1840, Handbuch der Physiologie des Menschen, Band 2. Koblenz, Germany.Google Scholar
  56. Neisser, U.: 1967, Cognitive Psychology. New York: Appelton.Google Scholar
  57. Newell, A.: 1990, Unified Theories of Cognition. Cambridge, MA: Harvard University Press.Google Scholar
  58. Newell, A. and H.A. Simon: 1976, Computer Science as Empirical Inquiry: Symbols and Search. Communications of the ACM 19: 113–126.Google Scholar
  59. Nolfi, S.: 1998, Evolutionary Robotics: Exploiting the Full Power of Selforganisation. Connection Science 10(3–4): 167–184.Google Scholar
  60. Nolfi, S. and D. Floreano: 1998, Co-evolving Predator and Prey Robots: Do ‘Arms Races’ Arise in Artificial Evolution? Artificial Life 4(4).Google Scholar
  61. Nolfi, S. and D. Floreano: 1999, Learning and Evolution. Autonomous Robots 7(1).Google Scholar
  62. Nolfi, S. and D. Floreano: 2000, Evolutionary Robotics. Cambridge, MA: MIT Press.Google Scholar
  63. Peschl, M.: 1997, The Representational Relation between Environmental Structures and Neural Systems: Autonomy and Environmental Dependency in Neural Knowledge Representation. NonlinearDynamics, Psychology and Life Sciences 1(2): 99–121.Google Scholar
  64. Peschl, M. and A. Riegler: 1999, Does Representation Need Reality. In A. Riegler, M. Peschl and A. von Stein (eds.), Understanding Representation in the Cognitive Sciences. New York: Plenum Press, 9–18.Google Scholar
  65. Pfeifer, R. and C. Scheier: 1999, Understanding Intelligence. Cambridge, MA: MIT Press.Google Scholar
  66. Piaget, J.: 1954, The Construction of Reality in the Child. New York: Basic Books. Originally appeared as Piaget: 1937, La construction du réel chez l'enfant. Neuchâtel, Switzerland: Delachaux et Niestlé.Google Scholar
  67. Piaget, J.: 1967, Six Psychological Studies. New York: Vintage.Google Scholar
  68. Pollack, J.B.: 1991, The Induction of Dynamical Recognizers. Machine Learning 7: 227–252.Google Scholar
  69. Prem, E.: 1997, Epistemic Autonomy in Models of Living Systems. In Proceedings of the Fourth European Conference on Artificial Life. Cambridge, MA: MIT Press, 2–9.Google Scholar
  70. Prem, E.: 1998, Semiosis in Embodied Autonomous Systems. In Proceedings of the IEEE International Symposium on Intelligent Control. Piscataway, NJ: IEEE, 724–729.Google Scholar
  71. Pylyshyn, Z. (ed.): 1987, The Robot's Dilemma: The Frame Problem in Artificial Intelligence. Norwood: Ablex Publishing.Google Scholar
  72. Richards, R.J.: 1987, Darwin and the Emergence of Evolutionary Theories of Mind and Behavior. Chicago: The University of Chicago Press.Google Scholar
  73. Riegler, A.: 1994, Constructivist Artificial Life: The Constructivist-anticipatory Principle and FunctionalCoupling. In J. Hopf (ed.), Genetic Algorithms with the Framework of Evolutionary Computation. Max-Planck-Institute für Informatik, MPI-I-94-241, Saarbrücken, Germany, 73–83.Google Scholar
  74. Riegler, A.: 1997, Ein kybernetisch-konstruktistisches Modell der Kognition. In A. Müller, K.H. Müller and F. Stadler (eds.), Konstruktivismus und Kognitionswissenschaft. KulturelleWurzeln und Ergebnisse. Vienna, New York: Springer, 75–88.Google Scholar
  75. Risku, H.: 2000, Situated Translation und Situated Cognition – Ungleiche Schwestern. In M. Kadric, K. Kaindl and F. Pöchhacker (eds.), Translationswissenschaft. Festschrift für Mary Snell-Hornby. Tübingen: Stauffenburg, 81–91.Google Scholar
  76. Rumelhart, D.E. and J.L. McClelland: 1986, On Learning the Past Tense of English Verbs. In D.E. Rumelhart and J.L. McClelland (eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 2. Psychological and Biological Models. Cambridge, MA: MIT Press, 216–271.Google Scholar
  77. Schank, R.C.: 1972, Conceptual Dependency: A Theory of Natural Language Understanding. Cognitive Psychology 3: 552–631.Google Scholar
  78. Schank, R.C.: 1975, Using Knowledge to Understand. Theoretical Issues in Natural Language Processing. Cambridge, MA.Google Scholar
  79. Schank, R.C. and R.P. Abelson: 1977, Scripts, Plans, Goals, and Understanding. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  80. Searle, J.: 1980, Minds, Brains and Programs. Behavioral and Brain Sciences 3: 417–457.Google Scholar
  81. Searle, J.: 1990, Is the Brain's Mind a Computer Program? Scientific American, January 1990: 20–25.Google Scholar
  82. Searle, J.: 1991, Consciousness, Explanatory Inversion and Cognitive Science. Behavioral and Brain Sciences 13: 585–642.Google Scholar
  83. Sejnowski, T. and C. Rosenberg: 1987, Parallel Networks that Learn to Pronounce English Text. Complex Systems 1: 145–168.Google Scholar
  84. Sharkey, N.E.: 1991, Connectionist Representation Techniques. Artificial Intelligence Review 5: 143–167.Google Scholar
  85. Sharkey, N.E. and T. Ziemke: 1998, A Consideration of the Biological and Psychological Foundations of Autonomous Robotics. Connection Science 10(3–4): 361–391.Google Scholar
  86. Sjölander, S.: 1999, How Animals Handle Reality – The Adaptive Aspect of Representation. In A. Riegler, M. Peschl and A. von Stein (eds.), Understanding Representation in the Cognitive Sciences. New York: Plenum Press, 277–282.Google Scholar
  87. Stewart, J.: 1996, Cognition = Life: Implications for Higher-level Cognition. Behavioural Processes 35: 311–326.Google Scholar
  88. Suchman, L.A.: 1987, Plans and Situated Action: The Problem of Human-Machine Communication. New York: Cambridge University Press.Google Scholar
  89. Varela, F.J., E. Thompson and E. Rosch: 1991, The Embodied Mind – Cognitive Science and Human Experience. Cambridge, MA: MIT Press.Google Scholar
  90. von Glasersfeld, E.: 1995, Radical Constructivism – A Way of Knowing and Learning. London: Falmer Press.Google Scholar
  91. von Uexküll, J.: 1909, Umwelt und Innenwelt der Tiere. Berlin: Springer Verlag.Google Scholar
  92. von Uexküll, J.: 1928, Theoretische Biologie. Berlin: Springer Verlag. NB: All page numbers refer to the first paperback edition, 1973, Frankfurt/Main, Germany: Suhrkamp.Google Scholar
  93. von Uexküll, J.: 1957, A Stroll Through the Worlds of Animals and Men – a Picture Book of Invisible Worlds. In C.H. Schiller (ed.), Instinctive Behavior – The Development of a Modern Concept. New York: International Universities Press, 5–80. Appeared also in Semiotica 89(4): 319–391. Originally appeared as von Uexküll: 1934, Streifzüge durch die Umwelten von Tieren undMenschen. Berlin: Springer.Google Scholar
  94. von Uexküll, J.: 1982, The Theory of Meaning. Semiotica 42(1): 25–82.Google Scholar
  95. von Uexküll, J.: 1985, Environment [Umwelt] and Inner World of Animals. In G.M. Burghardt (ed.), Foundations of Comparative Ethology. New York: Van Nostrand Reinhold. Partial translation of T. von Uexküll (1909) Umwelt und Innenwelt der Tiere. Berlin: Springer.Google Scholar
  96. von Uexküll, T.: 1992, Introduction: The Sign Theory of Jakob von Uexküll. Semiotica 89(4): 279–315. Originally appeared as T. von Uexküll: 1987, The Sign Theory of Jakob von Uexküll. In M. Krampen et al. (eds.), Classics of Semiotics. New York: Plenum, 147–179.Google Scholar
  97. von Uexküll, T.: 1997, Biosemiose. In R. Posner, K. Robering and T.A. Sebeok (eds.), Semiotik / Semiotics – Ein Handbuch zu den zeichentheoretischen Grundlagen von Natur und Kultur / A Handbook on the Sign-Theoretic Foundations of Nature and Culture. Berlin / New York: Walter de Gruyter, 447–457.Google Scholar
  98. von Uexküll, T., W. Geigges and J.M. Herrmann: 1993, Endosemiosis. Semiotica 96(1/2): 5–51.Google Scholar
  99. Wilson, S.W.: 1985, Knowledge Growth in an Artificial Animal. In J. Grefenstette (ed.), Proceedings of an International Conference on Genetic Algorithms and Their Applications. Hillsdale, NJ: Lawrence Erlbaum, 16–23.Google Scholar
  100. Wilson, S.W.: 1991, The Animat Path to AI. In J.-A. Meyer and S. Wilson (ed.), From Animals to Animats: Proceedings of The First International Conference on Simulation of Adaptive Behavior. Cambridge, MA: MIT Press, 15–21.Google Scholar
  101. Woods, W.A.: 1975, What's in a Link: Foundations for Semantic Networks. In D.G. Bobrow and A.M. Collins (eds.), Representation and Understanding: Studies in Cognitive Science. Academic Press, 35–82.Google Scholar
  102. Ziemke, T.: 1997, The ‘Environmental Puppeteer’ Revisited: A Connectionist Perspective on ‘Autonomy’. In Proceedings of the 6th European Workshop on Learning Robots (EWLR-6). Brighton, UK, 100–110.Google Scholar
  103. Ziemke, T.: 1998, Adaptive Behavior in Autonomous Agents. Presence 7(6): 564–587.Google Scholar
  104. Ziemke, T.: 1999a, Remembering How to Behave: Recurrent Neural Networks for Adaptive Robot Behavior. In L. Medsker and L.C. Jain (eds.), Recurrent Neural Networks: Design and Applications. New York: CRC Press, 355–389.Google Scholar
  105. Ziemke, T.: 1999b, Rethinking Grounding. In A. Riegler, M. Peschl and A. von Stein (eds.), Understanding Representation in the Cognitive Sciences. New York: Plenum Press, 177–190.Google Scholar
  106. Ziemke, T.: 2000a, Situated Neuro-Robotics and Interactive Cognition. Doctoral Dissertation, Department of Computer Science, University of Sheffield, UK.Google Scholar
  107. Ziemke, T.: 2000b, On ‘Parts’ and ‘Wholes’ of Adaptive Behavior: Functional Modularity and Diachronic Structure in Recurrent Neural Robot Controllers. In J.-A. Meyer, A. Berthoz, D. Floreano, H. Roitblat and S.W. Wilson (eds.), From Animals to Animats 6 – Proceedings of the Sixth International Conference on the Simulation of Adaptive Behavior. Cambridge, MA: MIT Press, 115–124.Google Scholar
  108. Ziemke, T. and N.E. Sharkey: in press, A Stroll Through the Worlds of Robots and Animals: Applying Jakob von Uexküll's Theory of Meaning to Adaptive Robots and Artificial Life. Semiotica, special issue on the work of Jakob von Uexküll, to appear in 2001.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Tom Ziemke
    • 1
  1. 1.Department of Computer ScienceUniversity of SkövdeSkövdeSweden

Personalised recommendations