Neural Processing Letters

, Volume 13, Issue 3, pp 195–201 | Cite as

Sequential Extraction of Minor Components

  • Tianping Chen
  • Shun-Ichi Amari
  • Noboru Murata
Article

Abstract

Principal component analysis (PCA) and Minor component analysis (MCA) are similar but have different dynamical performances. Unexpectedly, a sequential extraction algorithm for MCA proposed by Luo and Unbehauen [11] does not work for MCA, while it works for PCA. We propose a different sequential-addition algorithm which works for MCA. We also show a conversion mechanism by which any PCA algorithms are converted to dynamically equivalent MCA algorithms and vice versa.

minor component sequential algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amari, S.: Neural theory of association and concept-formation, Biology Cybernetics, 26 (1977), 175-185.Google Scholar
  2. 2.
    Brockett, R. W.: Least square matching problems, Linear Algebra Appl., 122-124 (1989), 761-777.Google Scholar
  3. 3.
    Brockett, R.W.: Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems, Linear Algebra Appl., 146 (1991), 79-91.Google Scholar
  4. 4.
    Chen, T. P.: Modified Oja's algorithms for principal subspace and minor subspace extraction, Neural Processing Letters, 5 (1997), 105-110.Google Scholar
  5. 5.
    Chen, T. P., Amari, S. I. and Lin, Q.: A unified algorithm for principal and minor components extraction, Neural Networks, 11 (1998), 385-390.Google Scholar
  6. 6.
    Chen, T. P., Hua, Y. and Yan, W. Y.: Global convergence of Oja's subspace algorithm for principal component extraction, IEEE Transactions on Neural Networks, 9 (1998), 58-67.Google Scholar
  7. 7.
    Chen, T. P. and Amari, S. I.: Unified stabilization approach to principal and minor components extraction algorithms, Neural Networks, (Accepted for publication).Google Scholar
  8. 8.
    Chen, T. P. and Amari, S. I.: Responses, Neural Networks, 12 (1999), 394.Google Scholar
  9. 9.
    Douglas, S. C., Kung, S. and Amari, S.: A self-stabilized minor subspace rule, IEEE Signal Processing Letter, 5 (1998), 330-332.Google Scholar
  10. 10.
    Luo, F. L., Unbehauen, R. and Cichocki, A.: A minor component analysis algorithm, Neural Networks, 10 (1997), 291-297.Google Scholar
  11. 11.
    Luo, F. L. and Unbehauen, R.: A minor subspace analysis algorithm, IEEE Trans. Neural Networks, 8 (1998), 1149-1155.Google Scholar
  12. 12.
    Luo, F. L. and Unbehauen, R.: Comments on a unified algorithms for principal and minor compoonent extraction, Neural Networks, 12 (1999), 393.Google Scholar
  13. 13.
    Oja, E.: A simplified neuron model as a principal component analyzer, J. Math. Biology, 15 (1982), 267-273.Google Scholar
  14. 14.
    Oja, E. and Karhunen, J.: On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix, J. Mathematical Analysis and Applications, 106 (1985), 69-84.Google Scholar
  15. 15.
    Oja, E.: Principal components, minor components, and linear neural networks, Neural Networks, 5 (1992), 927-935.Google Scholar
  16. 16.
    Sanger, T. D.: Optimal unsupervised learning in a single-layerfeed forward network, Neural Networks, 2 (1989), 459-573.Google Scholar
  17. 17.
    Xu, L., Krzyzak, L. and Oja, E.: Neural nets for dual subspace pattern recognition method, Int. J. Neural Systems, 2 (1991), 169-184.Google Scholar
  18. 18.
    Xu, L.: Least Mean square error recognition principle for self organizing neural nets, Neural Networks, 6 (1993), 627-648.Google Scholar
  19. 19.
    Xu L., Oja, E. and Suen, C. Y.: Modified Hebbian learning for curve and surface fitting, Neural Networks, 5 (1992), 441-457.Google Scholar
  20. 20.
    Wang, L. and Karhunen, J.: A unified neural bigradient algorithm for robust PCA and MCA, Int. J. Neural Systems, 7 (1996), 53-67.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Tianping Chen
    • 1
  • Shun-Ichi Amari
    • 2
  • Noboru Murata
    • 2
  1. 1.Department of MathematicsFudan UniversityShanghaiP.R.China
  2. 2.RIKEN Brain Science InstituteWako-shi, SaitamaJapan

Personalised recommendations