Russian Journal of Bioorganic Chemistry

, Volume 27, Issue 2, pp 110–119 | Cite as

Branched Alkanes and Other Apolar Compounds Produced by the Cyanobacterium Microcoleus vaginatusfrom the Negev Desert

  • V. M. Dembitsky
  • I. Dor
  • I. Shkrob
  • M. Aki


Gas chromatography–mass spectrometry on serially coupled capillary columns with different polarity of stationary phases showed that the soil cyanobacterium Microcoleusvaginatusfrom the Negev desert produces an unusual mixture of 4 normal and more than 60 branched alkanes, as well as a number of fatty acids, cyclic and unsaturated hydrocarbons, aldehydes, alcohols, and ketones. The dominant compounds were heptadecane (12%), 7-methylheptadecane (7.8%), hexadecanoic acid (6.5%), (Z)-9-hexadecenoic acid (5.6%), 4-ethyl-2,2,6,6-tetramethylheptane (2.8%), (Z)-9-octadecenoic acid (2.8%), and 4-methyl-5-propylnonane (2.7%).

alcohols aldehydes branched alkanes fatty acids gas chromatography–mass spectrometry ketones soil cyanobacteria Microcoleus vaginatus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Starks, T.S., Shubert, L.E., and Trainor, F.R., Phycologia, 1981, vol. 20, pp. 65–80.Google Scholar
  2. 2.
    Grimalt, J.O., de Wit, R., Teixidor, P., and Albages, J., Org. Geochem., 1992, vol. 19, pp. 509–530.Google Scholar
  3. 3.
    Gelpi, E., Schneider, H., Mann, J., and Oro, J., Phytochemistry, 1970, vol. 9, pp. 603–612.Google Scholar
  4. 4.
    Brassel, S.C., Isopentenoids and Other Natural Products: Evolution and Function, Nes, W.D., Ed., Washington: American Chemical Society, ACS Symp. Series 562, 1994, ch. 1, pp. 1–30.Google Scholar
  5. 5.
    Summons, R.E., Organic Geochemistry: Principles and Applications, Engel, M.H. and Macko, S.A., Eds., New York: Plenum, 1993, ch. 1, pp. 3–21.Google Scholar
  6. 6.
    Dor, I. and Danin, A., Arch. Hydrobiol. Algal Studies, 1996, vol. 83, pp. 197–206.Google Scholar
  7. 7.
    Danin, A., Dor, I., Sandler, A., and Amit, R., J. Arid Environ., 1998, vol. 38, pp. 161–174.Google Scholar
  8. 8.
    Dor, I., Israel J. Plant Sci., 1998, vol. 46, pp. 239–254.Google Scholar
  9. 9.
    Mazor, G., Kidron, G.J., Vonshak, A., and Abeliovich, A., FEMS Microbiol. Ecol., 1996, vol. 21, pp. 121–130.Google Scholar
  10. 10.
    Belnap, J. and Gardner, J.S., Great Basin Naturalist, 1993, vol. 53, pp. 40–47.Google Scholar
  11. 11.
    Danin, A., Bar-Or, Y., Dor, I., and Israeli, T., Ecol. Mediterran., 1989, vol. 15, pp. 55–64.Google Scholar
  12. 12.
    Dor, I., Botanica Marina, 1987, vol. 30, pp. 507–510.Google Scholar
  13. 13.
    Kudish, A.I., Evseev, E., and Kushelevsky, A.P., Int. J.Climatol., 1997, vol. 17, pp. 1697–1704.Google Scholar
  14. 14.
    De Philippis, R. and Vincenzini, M., FEMS Microbiol. Rev., 1998, vol. 22, pp. 151–175.Google Scholar
  15. 15.
    Lange, G.J., Kidron, B., Budel, A., Meyer, E., Kilian, E., and Abeliovich, A., Function. Ecol., 1992, vol. 6, pp.519–527.Google Scholar
  16. 16.
    Lopez, C.A. and Tovar, D., Geomicrobiol. J., 1992, vol. 10, pp. 115–123.Google Scholar
  17. 17.
    Karsten, U. and Garcia-Pichel, F., Syst. Appl. Microbiol., 1996, vol. 19, pp. 285–294.Google Scholar
  18. 18.
    Dembitsky, V.M., Dor, I., and Shkrob, I., Biokhimiya (Moscow), 2000, vol. 65, pp. 1666–1672.Google Scholar
  19. 19.
    Han, J., McCarthy, E.D., Calvin, M., and Benn, M.H., J.Chem. Soc. (C), 1968, pp. 2785–2791.Google Scholar
  20. 20.
    Winters, K., Parker, P.L., and van Baalen, C., Science, 1969, vol. 163, pp. 467–468.Google Scholar
  21. 21.
    Murata, N. and Nishida, I., The Biochemistry of Plants Lipids: Structure and Function, Stumpf, P.K., Ed., Orlando, Flo.: Academic, 1987, vol. 9, pp. 315–347.Google Scholar
  22. 22.
    Nevenzel, J.C., Marine Biogenic Lipids, Fats, and Oils, Ackman, R.G., Ed., Boca Ration: CRC, 1989, vol. 1, pp. 3–72.Google Scholar
  23. 23.
    Dembitsky, V.M., Shkrob, I., and Dor, I., J. Chromatogr., 1999, vol. 862, pp. 221–229.Google Scholar
  24. 24.
    Dembitsky, V.M., Shkrob, I., and Lev, O., J. Chem. Ecol., 2000, vol. 26, pp. 1359–1366.Google Scholar
  25. 25.
    Dembitsky, V.M., Shkrob, I., and Go, Dzh.V., Biokhimiya (Moscow), 2001, vol. 66, pp. 92–97.Google Scholar
  26. 26.
    Oro, J., Tornabene, T.G., Nooner, D.W., and Gelpi, E., J.Bacteriol., 1967, vol. 93, pp. 1811–1818.Google Scholar
  27. 27.
    de Leeuw, J.W., Sinninghe Damste, J.S., Klok, J., Schenck, P.A., and Boon, J.J., Ecological Studies of Hypersaline Ecosystems, Friedman, G.M. and Krumbein, W.E., Eds., Berlin: Springer, 1985, vol. 53, pp.350–367.Google Scholar
  28. 28.
    Kenig, F., Sinninghe Damste, J.S., Klok, J., Dalen, A.C., Rijpstra, W.I.C., Huc, A.Y., and de Leeuw, J.W., Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 2999–3015.Google Scholar
  29. 29.
    Shiea, J., Brassell, S.C., and Ward, D.M., Org. Geochem., 1990, vol. 15, pp. 223–231.Google Scholar
  30. 30.
    Dobson, G., Ward, D.M., Robinson, N., and Eglington, G., Chem. Geol., 1988, vol. 68, pp. 155–179.Google Scholar
  31. 31.
    Robinson, N. and Eglington, G., Org. Geochem., 1990, vol. 15, pp. 291–298.Google Scholar
  32. 32.
    Köster, J., Volkman, J.K., Rullkötter, J., Scholz-Böttcher, B.M., Rethmeier, J., and Fischer, U., Org. Geochem., 1999, vol. 30, pp. 1367–1379.Google Scholar
  33. 33.
    King, F., Sedimentation, Distribution et Diagenese de la Matiere Organique Dans un Enviroment Carbonate Hypersaline: Le Systeme Lagune Sabkha d'Abu Dhabi (E.A.U.), Ph.D. Thesis, Universite D'Orleans, 1995.Google Scholar
  34. 34.
    Summons, R.E., Jahnke, L.L., and Simoneit, B.R.T., Ciba Found. Symposium 202, Chichester: Wiley, 1996, pp. 174–194.Google Scholar
  35. 35.
    Summons, R.E., Jahnke, L.L., Hope, J.M., and Logan, D.A., Abstracts of Papers, Geochem. Conference, Canberra, 1998, pp. 10–11.Google Scholar
  36. 36.
    Lockey, K.H., Comp. Biochem. Physiol., B: Comp. Biochem., 1988, vol. 89B, pp. 595–645.Google Scholar
  37. 37.
    Volkman, J.K., Barrett, S.M., Blackburn, S.I., Mansour, M.P., Sikes, E.L., and Gelin, F., Org. Geochem., 1998, vol. 29, pp. 1163–1179.Google Scholar
  38. 38.
    Rowland, S.J. and Robson, J.N., Marine Environ. Res., 1990, vol. 30, pp. 191–216.Google Scholar
  39. 39.
    Volkman, J.K., Barrett, S.M., and Dunstan, G.A., Org. Geochem., 1994, vol. 21, pp. 407–413.Google Scholar
  40. 40.
    Sinninghe Damste, J.S., Schouten, S., Rijpstra, W.I.C., Hopmans, E.C., Peletier, H., Gieskes, W.W.C., and Greenevasen, J.A.J., Org. Geochem., 1999, vol. 30, pp.1581–1583.Google Scholar
  41. 41.
    Wraige, E.J., Belt, S.T., Masse, G., Robert, J.M., and Rowland, S.J., Org. Geochem., 1997, vol. 28, pp. 497–505.Google Scholar
  42. 42.
    Belt, S.T., Cooke, D.A., Robert, J.M., and Rowland, S.J., Tetrahedron Lett., 1996, vol. 37, pp. 4755–4758.Google Scholar
  43. 43.
    Warton, B., Alexander, R., and Kagi, R., Org. Geochem., 1997, vol. 27, pp. 465–476.Google Scholar
  44. 44.
    Harwood, J.L., Pettitt, T.P., and Jones, A.L., Biochemistry of the Algae and Cyanobacteria, Rogers, L.J. and Gallon, J.R., Eds., Oxford: Cladendron, 1988, pp. 49–67.Google Scholar
  45. 45.
    Herout, V., Progress in Phytochemistry, Reinhold, L. and Liwschitz, Y., Eds., London: I ntersci. Publ., Wiley and Sons, 1970, vol. 2, pp. 143–199.Google Scholar
  46. 46.
    Insect Lipids: Chemistry, Biochemistry, and Biology, Stanley-Samuelson, D.W. and Nelson, D.R., Eds., Nebraska: Nebraska Univ., 1993.Google Scholar
  47. 47.
    Core, R.J., Henning, J.A., and Gardea-Torresdey, J., J.Agric. Food Chem., 1994, vol. 42, pp. 2932–2936.Google Scholar
  48. 48.
    Battery, R.G. and Kamm, J.A., J. Agric. Food Chem., 1980, vol. 28, pp. 978–981.Google Scholar
  49. 49.
    Ali, M.F., Billen, J.P., Jackson, B.D., and Morgan, E.D., Biochem. Syst. Ecol., 1989, vol. 17, pp. 469–477.Google Scholar
  50. 50.
    Bagneres, A.G., Billen, J.P., and Morgan, E.D., J. Chem. Ecol., 1991, vol. 17, pp. 1633–1639.Google Scholar
  51. 51.
    van Smeerdijk, D.G. and Boon, J.J., J. Anal. Appl. Pyrolysis, 1987, vol. 11, pp. 377–402.Google Scholar
  52. 52.
    Volkman, J.K., Barnett, S.M., and Blackburn, S.I., Org. Geochem., 1999, vol. 30, pp. 307–318.Google Scholar
  53. 53.
    Dor, I. and Ehrlich, A., Marine Ecol, 1987, vol. 8, pp.93–205.Google Scholar
  54. 54.
    Kissin, Y.V., Feulmer, G.P., and Payne, W.B., J. Chromatogr. Sci., 1986, vol. 24, pp. 164–169.Google Scholar
  55. 55.
    Johns, R.B., Brady, B.A., Butler, M.S., Dembitsky, V.M., and Smith, J.D., Org. Geochem., 1994, vol. 21, pp.1027–1035.Google Scholar
  56. 56.
    Smirnov, M.B., Neftekhimiya, 1990, vol. 30, pp. 46–54.Google Scholar
  57. 57.
    Kurashova, E.K., Musaev, I.A., Smirnov, M.B., Simanyuk, R.N., Mikaya, A.I., Ivanov, A.V., and Sanin, P.I., Neftekhimiya, 1989, vol. 29, pp. 206–220.Google Scholar
  58. 58.
    Musaev, I.A., Kurashova, E.K., Simanyuk, R.N., Polyakova, A.A., Ermakova, L.S., Smirnov, M.B., and Sanin, P.I., Neftekhimiya, 1985, vol. 25, pp. 76–82.Google Scholar
  59. 59.
    Killops, S.D. and Al-Juboori, M.A.H.A., Org. Geochem., 1990, vol. 15, pp. 147–160.Google Scholar
  60. 60.
    Warton, B., Alexander, R., and Kagi, R., Org. Geochem., 1998, vol. 29, pp. 593–604.Google Scholar
  61. 61.
    Summons, R.E., Org. Geochem., 1987, vol. 11, pp. 281–289.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • V. M. Dembitsky
    • 1
    • 2
  • I. Dor
    • 3
  • I. Shkrob
    • 3
  • M. Aki
    • 2
  1. 1.Department of Pharmaceutical Chemistry and Natural Products, School of PharmacyThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Group of Natural LipidsThe Hebrew University of Jerusalem, JerusalemIsrael
  3. 3.Division of Environmental Science, Graduate School of Applied ScienceThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations