Clearance: The Last and Often Forgotten Stage of Apoptosis

  • Valerie A. Fadok
Article

Abstract

Engulfment by a phagocyte is the final commonevent in the life of most apoptotic cells. Phagocytosisof apoptotic bodies prior to their lysis prevents therelease of potentially toxic or immunogenicintracellular contents and activates an anti-inflammatoryresponse, at least in macrophages. We are beginning tounderstand the mechanisms by which macrophages and otherphagocytes recognize apoptotic cells in vitro, but we are a long way from determining theirrelative importance in vivo. The involuting mammarygland undergoes massive cell loss by apoptosis. Thedying alveolar epithelial cells can be shed into the lumen or can be phagocytosed by macrophages andviable epithelial cells. Yet we know virtually nothingabout the mechanisms mediating recognition and uptake inthe mammary gland. It is likely that clearance of apoptotic cells is critical to normalremodeling of the gland in preparation for the next waveof lactation. The mammary gland, therefore, provides anideal organ in which to study the mechanisms and consequences of apoptotic cell clearance invivo.

APOPTOSIS PHAGOCYTOSIS MAMMARY GLAND 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. F. R. Kerr, A. H. Wyllie, and A. R. Currie (1972). Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Brit. J. Cancer 26:239–257.Google Scholar
  2. 2.
    A. H. Wyllie, J. F. R. Kerr, and A. R. Currie (1980). Cell death: The significance of apoptosis. Int. Rev. Cytol. 68:251–306.Google Scholar
  3. 3.
    M. J. Arends and A. H. Wyllie (1991). Apoptosis: Mechanisms and roles in pathology. Int. Rev. Exp. Pathol. 32:223–254.Google Scholar
  4. 4.
    J. J. Cohen, R. C. Duke, V. A. Fadok, and K. S. Sellins (1992). Apoptosis and programmed cell death in immunity. Ann. Rev. Immunol. 10:267–293.Google Scholar
  5. 5.
    M. C. Raff (1992). Social controls on cell survival and cell death. Nature 356:397–400.Google Scholar
  6. 6.
    N. I. Walker, R. E. Bennett, and J. F. R. Kerr (1989). Cell death by apoptosis during involution of the lactating breast in mice and rats. Am. J. Anat. 185:19–32.Google Scholar
  7. 7.
    R. Strange, L. Feng, S. Saurer, A. Burkhardt, and R. R. Friis (1992). Apoptotic cell death and tissue remodeling during mouse mammary gland involution. Development 115:49–58.Google Scholar
  8. 8.
    W. Bielke, G. Ke, Z. Feng, S. Bhurer, S. Saurer, and R. R. Friis (1997). Apoptosis in the rat mammary gland and ventral prostate: Detection of cell death-associated genes using a coincident-expression cloning approach. Cell Death Differ. 4: 114–124.Google Scholar
  9. 9.
    L. R. Lund, J. Romer, N. Thomasset, H. Solberg, C. Pyke, M. J. Bissell, K. Dane, and Z. Werb (1996). Two distinct phases of apoptosis in mammary gland involution: Proteinase-independent and-dependent pathways. Development 122: 181–193.Google Scholar
  10. 10.
    R. S. Guenette, H. B. Corbeil, J. Leger, K. Wong, V. Mezl, M. Mooibroek, and M. Tenniswood, (1994). Induction of gene expression during involution of the lactating mammary gland of the rat. J. Mol. Endocrinol. 12:47–60.Google Scholar
  11. 11.
    G. R. Merlo, N. Cella, and N. E. Hynes (1997). Apoptosis is accompanied by changes in bcl-2 and bax expression, induced by loss of attachment, and inhibited by specific extracellular matrix proteins in mammary epithelial cells. Cell Growth Differ. 8:251–260.Google Scholar
  12. 12.
    C. S. Atwood, M. Ikeda, and B. K. Vonderhaar (1995). Involution of mouse mammary glands in whole organ culture: A model for studying programmed cell death. Biochem. Biophys. Res. Commun. 207:860–867.Google Scholar
  13. 13.
    J. Savill (1997). Recognition and phagocytosis of cell undergoing apoptosis. Br. Med. Bull. 53:491–508.Google Scholar
  14. 14.
    Y. Ren and J. Savill (1998). Apoptosis: The importance of being eaten. Cell Death Differ. 5:563–568.Google Scholar
  15. 15.
    V. A. Fadok and P. M. Henson (1998). Apoptosis: Getting rid of the bodies. Curr. Biol. 8:R693–R695.Google Scholar
  16. 16.
    R. E. Voll, M. Herrmann, E. A. Roth, C. Stach, and J. R. Kalden (1997). Immunosuppressive effects of apoptotic cells. Nature 390:350–351.Google Scholar
  17. 17.
    V. A. Fadok, D. L. Bratton, A. Konowal, P. W. Freed, J. Y. Westcott, and P. M. Henson (1998). Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGFβ, PGE2, and PAF. J. Clin. Invest. 101:890–898.Google Scholar
  18. 18.
    Y. Gao, J. M. Herndon, H. Zhang, T. S. Griffith, and T. A. Ferguson (1998). Antiinflammatory effects of CD95 ligand (FasL)-induced apoptosis. J. Exp. Med. 188:887–896.Google Scholar
  19. 19.
    J. Ogasawara, R. Watanable-Fukunaga, M. Adachi, A. Matsuzawa, T. Kasugai, Y. Kitamura, N. Itho, T. Suda, and S. Nagata (1993). Lethal effect of the anti-Fas antibody in mice. Nature 364:806–809.Google Scholar
  20. 20.
    M. Herrmann, R. E. Voll, O. M. Zoller, M. Hagenhofer, B. B. Ponner, and J. R. Kalden (1998). Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum. 41:1241–1250.Google Scholar
  21. 21.
    M. Botto, C. Dell' Agnola, A. E. Bygrave, E. M. Thompsonn, H. T. Cook, F. Petry, M. Loos, P. P. Pandolfi, and M. J. Walport (1998). Homozygmous C1q deficiency causes glomerulonephritis asssociated with multiple apoptotic bodies. Nat. Genet. 19:56–59.Google Scholar
  22. 22.
    S. L. Newman, J. E. Henson, and P. M. Henson (1982). Phagocytosis of senescent neutrophils by human monocyte-derived macrophages and rabbit inflammatory macrophages. J. Exp. Med. 156:430–442.Google Scholar
  23. 23.
    J. S. Savill, A. J. Wyllie, J. E. Henson, M. J. Walport, P. M. Henson, and C. Haslett (1989). Macrophage phagocytosis of aging neutrophils in inflammation. J. Clin. Invest. 83:865–875.Google Scholar
  24. 24.
    J. Savill, I. Dransfield, N. Hogg, and C. Haslett (1990). Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 343:170–173.Google Scholar
  25. 25.
    J. Savill (1998). Phagocytic docking without shocking. Nature 392:442–443.Google Scholar
  26. 26.
    A. Devitt, O. D. Moffatt, C. Raykundalia, J. D. Capra, D. L. Simmons, and C. D. Gregory (1998). Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature 392:505–509.Google Scholar
  27. 27.
    E. Duvall, A. H. Wyllie, and R. G. Morris (1985). Macrophage recognition of cells undergoing programmed cell death (apoptosis). Immunology 56:351–358.Google Scholar
  28. 28.
    N. Platt, H. Suzuki, Y. Kurihara, T. Kodama, and S. Gordon (1996). Role for the class A macrophage scavenger reporter in the phagocytosis of apoptotic thymocytes in vitro. Proc. Natl. Acad. Sci. U.S.A. 93:12456–12460.Google Scholar
  29. 29.
    J. Savill, N. Hogg, Y. Ren, and C. Haslett (1992). Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J. Clin. Invest. 90:1513–1522.Google Scholar
  30. 30.
    M-F. Luciani and G. Chimini (1996). The ATP binding cassette transporter ABC1, is required for the engulfment of corpses generated by apoptotic cell death. EMBO J. 15:226–235.Google Scholar
  31. 31.
    V. Terpstra N. Kondratenko and S. Steinberg (1997). Macrophages lacking scavenger receptor A show a decrease in binding and uptake of acetylated low-density lipoprotein and of apoptotic thymocytes, but not of oxidatively damaged red blood cells. Proc. Natl. Acad. Sci. U.S.A. 94:8127–8131.Google Scholar
  32. 32.
    V. A. Fadok, J. S. Savill, C. Haslett, D. L. Bratton, D. E. Doherty, P. A. Campbell, and P. M. Henson (1992). Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J. Immunol. 149:4029–4035.Google Scholar
  33. 33.
    V. A. Fadok, D. R. Voelker, P. A. Campbell, J. J. Cohen, D. L. Bratton, and P. M. Henson (1992). Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148:2207–2216.Google Scholar
  34. 34.
    V. A. Fadok, D. J. Laszlo, P. W. Noble, L. Weinstein, D. W. H. Riches, and P. M. Henson (1993). Particle digestibility is required for induction of the phosphatidylserine recognition mechanism used by murine macrophages to phagocytose apoptotic cells. J. Immunol. 151:4274–4285.Google Scholar
  35. 35.
    V. A. Fadok, M. L. Warner, D. L. Bratton, and P. M. Henson (1998). CD36 is required for phagocytosis of apoptotic cells by human macrophages which utilize either a phosphatidylserine receptor or the vitronectin receptor (αvβ3). J. Immunol. 161:6250–6257.Google Scholar
  36. 36.
    D. Pradhan, S. Krahling, P. Williamson, and R. A. Schlegel (1997). Multiple systems for recognition of apoptotic lymphocytes by macrophages. Mol. Biol. Cell. 8:767–778.Google Scholar
  37. 37.
    Y-C. Wu and H. R. Horvitz (1998). C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK 180. Nature 392:501–504.Google Scholar
  38. 38.
    Q. A. Liu and M. O. Hengartner (1998). Candidate adaptor protein CED-6 promotes the engulfment of apoptotic cells in C. elegans. Cell 93:961–972.Google Scholar
  39. 39.
    Y-C. Wu and H. R. Horvitz (1998). The C. elegans cell corpse engulfment gene ced-7 encodes a protein similar to ABC transporters. Cell 93:9511–960.Google Scholar
  40. 40.
    L. Dini, F. Autuori, A. Lentini, S. Oliverio, and M. Piacentini (1992). The clearance of apoptotic cells in the liver is mediated by the asialoglycoprotein receptor. FEBS Lett. 296:174–178.Google Scholar
  41. 41.
    L. Dini, A. Lentini, G. D. Diez, M. Rocha, L. Falasca, and L. Serafino F. Vidal Vanclocha (1995). Phagocytosis of apoptotic bodies by liver endothelial cells. J. Cell Sci. 108:967–973.Google Scholar
  42. 42.
    L. Falasca, A. Bergamini, A. Serafino, C. Balabaud, and L. Dini (1996). Human Kupffer cell recognition and phagocytosis of apoptotic peripheral blood lymphocytes. Exp. Cell Res. 224:152–162.Google Scholar
  43. 43.
    D. A. Mower, D. W. Peckham, V. A. Illera, J. K. Fishbaugh, L. L. Stunz, and R. F. Ashman (1994). Decreased membrane phospholipid packing and decreased cell size precede DNA cleavage in mature mouse B cell apoptosis. J. Immunol. 152:4832–4841.Google Scholar
  44. 44.
    G. Koopman, C. P. M. Reutelingsperger, G. A. M. Kuijten, R. M. J. Keehnen, S. T. Pals, M. H. J. van Oers (1994). Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420.Google Scholar
  45. 45.
    B. Verhoven, R. A. Schlegel, and P. Williamson (1995). Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal on apoptotic T lymphocytes. J. Exp. Med. 182: 1597–1601.Google Scholar
  46. 46.
    S. J. Martin, C. P. M. Reutelingsperger, A. J. McGahon, J. A. Rader, R. C. A. A. van Schie, D. M. LaFace, and D. R. Green (1995). Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: Inhibition by overexpression of bcl-2 and abl. J. Exp. Med. 182:1545–1556.Google Scholar
  47. 47.
    C. H. E. Homburg, M. de Haas, A. E. G. Kr. von dem Borne, A. J. Verhoeven, C. P. M. Reutelingsperger, and D. Roos (1995). Human neutrophils lose their surface FcγRIII and acquire annexin V binding sites during apoptosis in vitro. Blood 85:532–540.Google Scholar
  48. 48.
    D. L. Bratton, V. A. Fadok, D. A. Richter, J. M. Kailey, L. A. Guthrie, and P. M. Henson (1997). Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by the loss of the aminophospholipid translocase. J. Biol. Chem. 272:26159–26165.Google Scholar
  49. 49.
    I. Vermes, C. Haanen, H. Steffens-Nakken, and C. Reutelingsperger (1995). A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labeled annexin V. J. Immunol. Meth. 184:39–51.Google Scholar
  50. 50.
    G. Zhang, V. Gurtu, S. R. Kain, and G. Yan (1997). Early detection of apoptosis using a fluorescent conjugate of annexin V. Biotechniques 23:525–531.Google Scholar
  51. 51.
    P-y. Wang, R. L. Kitchens, and R. S. Munford (1998). Phosphatidylinositides bind to plasma membrane CD14 and can prevent monocyte activation by bacterial lipopolysaccharide. J. Biol. Chem. 273:24309–24313.Google Scholar
  52. 52.
    P. K. Flora and C. D. Gregory (1994). Recognition of apoptotic cells by human macrophages: Inhibition by a monocyte/macro — phage-specific monoclonal antibody. Eur. J. Immunol. 24: 2625–2632.Google Scholar
  53. 53.
    S. P. Hart, G. J. Dougherty, C. Haslett, and I. Dransfield (1997). CD44 regulates phagocytosis of apoptotic neutrophil granulocytes, but not apoptotic lymphocytes, by human macrophages. J. Immunol. 159:919–925.Google Scholar
  54. 54.
    D. D. Roberts, D. M. Haverstick, V. M. Dixit, W. A. Frazier, S. A. Santoro, V. Ginsburg (1985). The platelet glycoprotein thrombospondin binds specifically to sulfated glycolipids. J. Biol. Chem. 260:9405–9411.Google Scholar
  55. 55.
    X. Sun, D. F. Mosher, and A. Rapraeger (1989). Heparan sulfate-mediated binding of epithelial cell surface proteoglycan to thrombospondin. J. Biol. Chem. 264:2885–2889.Google Scholar
  56. 56.
    L. C. Korb and J. M. Ahearn (1997). C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes. Complement deficiency and systemic lupus erythematosus revisited. J. Immunol. 158:4525–4528.Google Scholar
  57. 57.
    B. E. Price, J. Rauch, M. A. Sia, M. T. Walsh, W. Lieberthal, H. Gilligan, T. O'Laughlin, J. S. Koh, and J. S. Levine (1996). Antiphospholipid autoantibodies bind to apoptotic, but not viable, thymocytes in a β2–glycoprotein 1–dependent manner. J. Immunol. 157:2201–2208.Google Scholar
  58. 58.
    A. A. Manfredi, P. Rovere, G. Galati, S. Heltai, E. Bozzolo, L. Soldini, J. Davoust, G. Balestrieri, A. Tincani, and M. G. Sabbadini (1998). Apoptotic cell clearance in systemic lupus erythematosus. I. Opsonization by antiphospholipid antibodies. Arthritis Rheum. 41:205–214.Google Scholar
  59. 59.
    A. A. Manfredi, P. Rovere, S. Heltai, G. Galati, G. Nebbia, A. Tincani, G. Balestrieri, and M. G. Sabbadini (1998). Apoptotic cell clearance in systemic lupus erythematosus. II. Role of β2–Glycoprotein I. Arthritis Rheum. 41:215–223.Google Scholar
  60. 60.
    K. Balasubramanian, J. Chandra, and A. J. Schroit (1997). Immune clearance of phosphatidylserine-expressing cells by phagocytes. J. Biol. Chem. 272:31113–31117.Google Scholar
  61. 61.
    K. Balasubramanian, and A. J. Schroit (1998). Characterization of phosphatidylserine-dependent b2–glycoprotein I macrophage interactions. J. Biol. Chem. 273:29272–29277.Google Scholar
  62. 62.
    F. Takizawa, S. Tsuji, and S. Nagasawa (1996). Enhancement of macrophage phagocytosis upon iC3b deposition on apoptotic cells. FEBS Lett. 397:269–272.Google Scholar
  63. 63.
    D. Mevorach, J. O. Mascarenhas, D. Gershov, and K. B. Elkon (1998). Complement-dependent clearance of apoptotic cells by human macrophages. J. Exp Med. 188:2313–2320.Google Scholar
  64. 64.
    J. Savill, J. Smith, C. Sarraf, Y. Ren, F. Abbott, and A. Rees (1992). Glomerular mesangial cells and inflammatory macrophages ingest neutrophils undergoing apoptosis. Kidney Intl. 42:924–936.Google Scholar
  65. 65.
    J. Hughes, Y. Liu, J. Van Damme, and J. Savill (1997). Human glomerular mesangial cell phagocytosis of apoptotic neutrophils. Meditation by a novel CD36–independent vitronectin receptor/thrombospondin recognition mechanism that is uncoupled from chemokine secretion. J. Immunol. 158:4389–4397.Google Scholar
  66. 66.
    M. R. Bennet, D. F. Gibson, S. M. Schwartz, J. F. Tait (1995). Binding and phagocytosis of apoptotic vascular smooth muscle cells is mediated in part by exposure of phosphatidylserine. Circ. Res. 77:1136–1142.Google Scholar
  67. 67.
    A. Shiratsuchi, M. Umeda, Y. Ohba, and Y. Nakanishi (1997). Recognition of phosphatidylserin e on the surface of apoptotic spermatogenic cells and subsequent phagocytosis by Sertoli cells of the rat. J. Biol. Chem. 272:2354–2358.Google Scholar
  68. 68.
    S. E. Hall, J. S. Savill, P. M. Henson, C. Haslett (1994). Apoptotic neutrophils are phagocytosed by fibroblasts with participation of the fibroblast vitronectin receptor and involvement of a mannose/fucose-sp ecific lectin. J. Immunol. 153:3218–3227.Google Scholar
  69. 69.
    R. S. Gomez, M. Pelka, A. C. Johannessen, O. P. Hornstein, and P. von den Driesch (1997). CD36 (OKM5) antigen expression on human mucosal epithelia is associated with keratinization type. J. Dermatol. 24:435–440.Google Scholar
  70. 70.
    M. Simon, I. Juhasz, M. Herlyn, and J. Hunyadi (1996). Thrombospondin receptor (CD36) expression of human keratinocytes during wound healing in a SCID mouse/human skin repair model. J. Dermatol. 23:305–309.Google Scholar
  71. 71.
    N. Aoki, T. Ishii, S. Ohira, Y. Yamaguchi, M. Negi, T. Adachi, R. Nakamura, and T. Matsuda (1997). Stage specific expression of milk fat globule membrane glycoproteins in mouse mammary gland: Comparison of MFG-E8, butyrophilin, and CD36 with a major milk protein, beta-casein. Biochim. Biophys. Acta 1334:182–190.Google Scholar
  72. 72.
    L. Berglund, T. E. Petersen, and J. T. Rasmussen (1996). Structural characterization of bovine CD36 from the milk fat globule membrane. Biochim. Biophys. Acta 1309:63–68.Google Scholar
  73. 73.
    Z. Abbadia, E. Vericel, P. Mathevet, N. Bertin, G. Panaye, and L. Frappart (1997). Fatty acid composition and CD36 expression in breast adipose tissue of premenopausal and post-menopausal women. Anticancer Res. 17:1217–1221.Google Scholar
  74. 74.
    A. G. S. Baillie, C. T. Coburn, and N. A. Abumrad (1996). Reversible binding of long-chain fatty acids to purified FAT, the adipose CD36 homolog. J. Membrane Biol. 153:75–81.Google Scholar
  75. 75.
    I. D. Silva, A. M. Salicioni, I. H. Russo, N. A. Higgy, L. H. Gebrim, and J. Russo (1997). Tamoxifen down-regulates CD36 messenger RNA levels in normal and neoplastic human breast tissues. Cancer Res. 57:378–381.Google Scholar
  76. 76.
    S. W. Ryeom, J. R. Sparrow, and R. L. Silverstein (1996). CD36 participates in the phagocytosis of rod outer segments by retinal pigment epithelium. J. Cell Sci. 109:387–395.Google Scholar
  77. 77.
    S. W. Ryeom, R. L. Silverstein, A. Scotto, and J. R. Sparrow (1996). Binding of anionic phospholipids to retinal pigment epithelium may be mediated by the scavenger receptor CD36. J. Biol. Chem. 271:20536–20539.Google Scholar
  78. 78.
    L. C. Meagher, J. S. Savill, A. Baker, R. W. Fuller, and C. Haslett (1992). Phagocytosis of apoptotic neutrophils does not induce macrophage release of thromboxane B2. J. Leukocyte Biol. 52:269–273.Google Scholar
  79. 79.
    M. Stern, J. Savill, and C. Haslett (1996). Human monocyte-derived macrophage phagocytosis of senescent eosinophils undergoing apoptosis. Mediation by αvβ3/CD36/thrombospondin recognition mechanism and lack of phlogistic response. Am. J. Pathol. 149:911–921.Google Scholar
  80. 80.
    M. L. Albert, B. Sauter, and N. Bhardwaj (1998). Dendritic cells acquire antigen from apoptotic cells and induce class Irestricted CTLs. Nature 392:86–89.Google Scholar
  81. 81.
    P. Rovere, C. Vallinoto, A. Bondanza, M. C. Crosti, M. Rescigno, P. Ricciardi-Castagnoli, C. Rugarli, and A. A. Manfredi (1998). Cutting edge: Bystander apoptosis triggers dendritic cell maturation and antigen-presenting function. J. Immunol. 161:4467–4471.Google Scholar
  82. 82.
    M. Albert, S. F. A. Pearce, L. M. Francisco, B. Sauter, P. Roy, R. L. Silverstein, and N. Bhardwaj (1998). Immature dentritic cells phagocytose apoptotic cells via αvβ5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J. Exp. Med. 188:1359–1368.Google Scholar
  83. 83.
    Y. Ren, R. L. Silverstein, J. Allen, and J. Savill (1995). CD36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis. J. Exp. Med. 181:1857–1862.Google Scholar
  84. 84.
    N. C. Franc, J-L. Dimarcq, M. Lagueux, J. Hoffmann, and R. A. B. Ezekowitz (1996). Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. Immunity 4:431–443.Google Scholar
  85. 85.
    T. Nakano, Y. Ishimoto, J. Kishino, M. Umeda, K. Inoue, K. Nagata, K. Ohashi, K. Mizuno, and H. Arita (1997). Cell adhesion to phosphatidylserin e mediated by a product of growth arrest-specific gene 6. J. Biol. Chem. 272:29411–29414.Google Scholar
  86. 86.
    P. K. Flora and C. D. Gregory (1995). Recognition pathways in the interaction of macrophages with apoptotic B cells. Leukocyte Typing 5:1675–1677.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Valerie A. Fadok

There are no affiliations available

Personalised recommendations