Advertisement

Proteoglycans: Pericellular and Cell Surface Multireceptors that Integrate External Stimuli in the Mammary Gland

  • Maryse Delehedde
  • Malcolm Lyon
  • Nicolas Sergeant
  • Hassan Rahmoune
  • David G. Fernig
Article

Abstract

Proteoglycans consist of a core protein and an associated glycosaminoglycan (GAG)4 chain of heparan sulfate, chondroitin sulfate, dermatan sulfate or keratan sulfate, which are attached to a serine residue. The core proteins of cell surface proteoglycans may be transmembrane, e.g., syndecan, or GPI-anchored, e.g., glypican. Many different cell surface and matrix proteoglycan core proteins are expressed in the mammary gland and in mammary cells in culture. The level of expression of these core proteins, the structure of their GAG chains, and their degradation are regulated by many of the effectors that control the development and function of the mammary gland. Regulatory proteins of the mammary gland that bind GAG include many growth factors and morphogens (fibroblast growth factors, hepatocyte growth factor/scatter factor, members of the midkine family, wnts), matrix proteins (collagen, fibronectin, and laminin), enzymes (lipoprotein lipase) and microbial surface proteins. Structural diversity within GAG chains ensures that each protein-GAG interaction is as specific as necessary and a number of sequences of saccharides that recognize individual proteins have been elucidated. The GAG-protein interactions serve to regulate the signal output of growth factor receptor tyrosine kinase and hence cell fate as well as the storage and diffusion of extracellular protein effectors. In addition, GAGs clearly coordinate stromal and epithelial development, and they are active participants in mediating cell-cell and cell-matrix interactions. Since a single proteoglycan, even if it carries a single GAG chain, can bind multiple proteins, proteoglycans are also likely to act as multireceptors which promote the integration of cellular signals.

proteoglycan glycosaminoglycan heparan sulfate chondroitin sulfate dermatan sulfate hyaluronic acid growth factor extracellular matrix morphogen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. Bernfield, M. Gotte, P. W. Park, O. Reizes, M. L. Fitzgerald, J. Lincecum, and M. Zako (1999). Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68:729-777.PubMedGoogle Scholar
  2. 2.
    A. M. Hocking, T. Shinomura, and D. J. McQuillan (1998). Leucine-rich repeat glycoproteins of the extracellular matrix. Matrix Biol. 17:1-19.PubMedGoogle Scholar
  3. 3.
    J. T. Gallagher and M. Lyon (2000). Heparan sulphate: Molecular structure and interaction with growth factors and morphogens. In R. V. Iozzo (ed.), Proteoglycans: Structure, Biology and Molecular Interactions. Marcel Dekker, New York, pp. 27-60.Google Scholar
  4. 4.
    R. V. Iozzo (1998). Matrix proteoglycans: From molecular design to cellular function. Annu. Rev. Biochem. 67:609-652.PubMedGoogle Scholar
  5. 5.
    J. L. Funderburgh (2000). Keratan sulfate: Structure, biosynthesis, and function. Glycobiology 10:951-958.PubMedGoogle Scholar
  6. 6.
    P. H. Weigel, V. C. Hascall, and M. Tammi (1997). Hyaluronan synthases. J. Biol. Chem. 272:13997-14000.PubMedGoogle Scholar
  7. 7.
    J. R. Fraser, T. C. Laurent, and U. B. Laurent (1997). Hyaluronan: Its nature, distribution, functions and turnover. J. Intern. Med. 242:27-33.PubMedGoogle Scholar
  8. 8.
    O. Habuchi (2000). Diversity and functions of glycosaminoglycan sulfotransferases. Biochim. Biophys. Acta. 1474:115-127.PubMedGoogle Scholar
  9. 9.
    M. Lyon and J. T. Gallagher (1998). Bio-specific sequences and domains in heparan sulphate and the regulation of cell growth and adhesion. Matrix Biol. 17:485-493.PubMedGoogle Scholar
  10. 10.
    B. Mulloy and M. J. Forster (2000). Conformation and dynamics of heparin and heparan sulfate. Glycobiology 10:1147-1156.PubMedGoogle Scholar
  11. 11.
    N. S. Fedarko (1993). Isolation and purification of proteoglycans. Experientia 49:369-383.PubMedGoogle Scholar
  12. 12.
    G. A. Losa and M. Alini (1993). Sulfated proteoglycans in the extracellular matrix of human breast tissues with infiltrating carcinoma. Int. J. Cancer 54:552-557.PubMedGoogle Scholar
  13. 13.
    G. B. Silberstein and C. W. Daniel (1982). Glycosaminoglycans in the basal lamina and extracellular matrix of the developing mouse mammary duct. Dev. Biol. 90:215-222.PubMedGoogle Scholar
  14. 14.
    E. V. Chandrasekaran and E. A. Davidson (1979). Glycosaminoglycans of normal and malignant cultured human mammary cells. Cancer Res. 39:870-880.PubMedGoogle Scholar
  15. 15.
    G. Parry, E. Y. Lee, D. Farson, M. Koval, and M. J. Bissell (1985). Collagenous substrata regulate the nature and distribution of glycosaminoglycans produced by differentiated cultures of mouse mammary epithelial cells. Exp. Cell. Res. 156:487-499.PubMedGoogle Scholar
  16. 16.
    M. de la Torre, A. F. Wells, J. Bergh, and A. Lindgren (1993). Localization of hyaluronan in normal breast tissue, radial scar, and tubular breast carcinoma. Hum. Pathol. 24:1294-1297.PubMedGoogle Scholar
  17. 17.
    P. S. Rudland, R. Barraclough, D. G. Fernig, and J. A. Smith (1996). Mammary stem cells in normal development and cancer. In C. Potton (ed.), Stem Cells and Cancer. Academic Press, London, pp. 147-232.Google Scholar
  18. 18.
    M. J. Warburton, R. Kimbell, S. A. Ferns, A. R. Hayman, N. Perusinghe, and P. Monaghan (1992). Characterisation of chondroitin/dermatan sulphate proteoglycans synthesised by rat mammary myoepithelial and fibroblastic cell lines. Biochim. Biophys. Acta 1117:291-300.PubMedGoogle Scholar
  19. 19.
    J. E. Ferguson, A. M. Schor, A. Howell, and M. W. Ferguson (1992). Changes in the extracellular matrix of the normal human breast during the menstrual cycle. Cell Tissue Res. 268:167-177.PubMedGoogle Scholar
  20. 20.
    M. J. Warburton, D. Mitchell, E. J. Ormerod, and P. Rudland (1982). Distribution of myoepithelial cells and basement membrane proteins in the resting, pregnant, lactating, and involuting rat mammary gland. J. Histochem. Cytochem. 30:667-676.PubMedGoogle Scholar
  21. 21.
    N. Sunil, N. Srinivasan, M. M. Aruldhas, and P. Govindarajulu (2000). Impact of oestradiol and progesterone on the glycosaminoglycans and their depolymerizing enzymes of the rat mammary gland. Acta Physiol. Scand. 168:385-392.PubMedGoogle Scholar
  22. 22.
    P. Auvinen, R. Tammi, J. Parkkinen, M. Tammi, U. Agren, R. Johansson, P. Hirvikoski, M. Eskelinen, and V. M. Kosma (2000). Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading and predicts survival. Am. J. Pathol. 156:529-536.PubMedGoogle Scholar
  23. 23.
    J. Hitzeman, P. G. Woost, and H. L. Hosick (1992). Correlation of hyaluronic acid accumulation and the growth of preneoplastic mammary cells in collagen: A longitudinal study. In Vitro Cell Dev. Biol. 28:284-292.Google Scholar
  24. 24.
    P. Bertrand, N. Girard, C. Duval, J. d'Anjou, C. Chauzy, J. F. Menard, and B. Delpech (1997). Increased hyaluronidase levels in breast tumor metastases. Int. J. Cancer 73:327-331.PubMedGoogle Scholar
  25. 25.
    A. K. Madan, K. Yu, N. Dhurandhar, C. Cullinane, Y. Pang, and D. J. Beech (1999). Association of hyaluronidase and breast adenocarcinoma invasiveness. Oncol. Rep. 6:607-609.PubMedGoogle Scholar
  26. 26.
    J. Lesley, V. C. Hascall, M. Tammi, and R. Hyman (2000). Hyaluronan binding by cell surface CD44. J. Biol. Chem. 275:26967-26975.PubMedGoogle Scholar
  27. 27.
    P. Vijayagopal, J. E. Figueroa, and E. A. Levine (1998). Altered composition and increased endothelial cell proliferative activity of proteoglycans isolated from breast carcinoma. J. Surg. Oncol. 68:250-254.PubMedGoogle Scholar
  28. 28.
    M. Delehedde, E. Deudon, B. Boilly, and H. Hondermarck (1996). Heparan sulfate proteoglycans play a dual role in regulating fibroblast growth factor-2 mitogenic activity in human breast cancer cells. Exp. Cell Res. 229:398-406.PubMedGoogle Scholar
  29. 29.
    G. Pejler and G. David (1987). Basement-membrane heparan sulphate with high affinity for antithrombin synthesized by normal and transformed mouse mammary epithelial cells. Biochem J. 248:69-77.PubMedGoogle Scholar
  30. 30.
    M. Delehedde, E. Deudon, B. Boilly, and H. Hondermarck (1997). Production of sulfated proteoglycans by human breast cancer cell lines: Binding to fibroblast growth factor-2. J. Cell. Biochem. 64:605-617.PubMedGoogle Scholar
  31. 31.
    H. Rahmoune, H. L. Chen, J. T. Gallagher, P. S. Rudland, and D. G. Fernig (1998). Interaction of heparan sulfate from mammary cells with acidic fibroblast growth factor (FGF) and basic FGF. Regulation of the activity of basic FGF by high and low affinity binding sites in heparan sulfate. J. Biol. Chem. 273:7303-7310.PubMedGoogle Scholar
  32. 32.
    H. Rahmoune, P. S. Rudland, J. T. Gallagher, and D. G. Fernig (1998). Hepatocyte growth factor/scatter factor has distinct classes of binding site in heparan sulfate from mammary cells. Biochemistry 37:6003-6008.PubMedGoogle Scholar
  33. 33.
    F. Safaiyan, U. Lindahl, and M. Salmivirta (1998). Selective reduction of 6-O-sulfation in heparan sulfate from transformed mammary epithelial cells. Eur. J. Biochem. 252:576-582.PubMedGoogle Scholar
  34. 34.
    H. Rahmoune, J. E. Turnbull, J. T. Gallagher, P. S. Rudland, and D. G. Fernig (1996). Heparan sulphate in breast cancer cells. Biochem. Soc. Trans. 24:355S.PubMedGoogle Scholar
  35. 35.
    A. D. Lander, C. S. Stipp, and J. K. Ivins (1996). The glypican family of heparan sulfate proteoglycans: Major cell-surface proteoglycans of the developing nervous system. Perspect. Dev. Neurobiol. 3:347-358.PubMedGoogle Scholar
  36. 36.
    N. Perrimon and M. Bernfield (2000). Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404:725-728.PubMedGoogle Scholar
  37. 37.
    M. J. Stanley, M. W. Stanley, R. D. Sanderson, and R. Zera (1999). Syndecan-1 expression is induced in the stroma of infiltrating breast carcinoma. Am. J. Clin. Pathol. 112:377-383.PubMedGoogle Scholar
  38. 38.
    S. Leppa, K. Vleminckx, F. Van Roy, and M. Jalkanen (1996). Syndecan-1 expression in mammary epithelial tumor cells is E-cadherin-dependent. J. Cell Sci. 109:1393-1403.PubMedGoogle Scholar
  39. 39.
    M. Romaris, A. Bassols, and G. David (1995). Effect of transforming growth factor-beta 1 and basic fibroblast growth factor on the expression of cell surface proteoglycans in human lung fibroblasts. Enhanced glycanation and fibronectin-binding of CD44 proteoglycan, and down-regulation of glypican. Biochem. J. 310:73-81.PubMedGoogle Scholar
  40. 40.
    S. V. Subramanian, M. L. Fitzgerald, and M. Bernfield (1997). Regulated shedding of syndecan-1 and-4 ectodomains by thrombin and growth factor receptor activation. J. Biol. Chem. 272:14713-14720.PubMedGoogle Scholar
  41. 41.
    P. Herrlich, H. Morrison, J. Sleeman, V. Orian-Rousseau, H. Konig, S. Weg-Remers, and H. Ponta (2000). CD44 acts both as a growth-and invasiveness-promoting molecule and as a tumor-suppressing cofactor. Ann. N.Y. Acad. Sci. 910:106-120.PubMedGoogle Scholar
  42. 42.
    A. Herrera-Gayol and S. Jothy (1999). Adhesion proteins in the biology of breast cancer: Contribution of CD44. Exp. Mol. Pathol. 66:149-156.PubMedGoogle Scholar
  43. 43.
    L. I. Gold (1999). The role for transforming growth factor-beta (TGFβ) in human cancer. Crit. Rev. Oncog. 10:303-360.PubMedGoogle Scholar
  44. 44.
    F. Lopez-Casillas, S. Cheifetz, J. Doody, J. L. Andres, W. S. Lane, and J. Massagué (1991). Structure and expression of the membrane proteoglycan betaglycan, a component of the TGF-beta receptor system. Cell 67:785-795.PubMedGoogle Scholar
  45. 45.
    M. Reiss and M. H. Barcellos-Hoff (1997). Transforming growth factor-beta in breast cancer: A working hypothesis. Breast Cancer Res. Treat. 45:81-95.PubMedGoogle Scholar
  46. 46.
    T. L. Woodward, N. Dumont, M. O'Connor-McCourt, J. D. Turner, and A. Philip (1995). Characterization of transforming growth factor-beta growth regulatory effects and receptors on bovine mammary cells. J. Cell. Physiol. 165:339-348.PubMedGoogle Scholar
  47. 47.
    M. Dolan, T. Horchar, B. Rigatti, and J. R. Hassell (1997). Identification of sites in domain I of perlecan that regulate heparan sulfate synthesis. J. Biol. Chem. 272:4316-4322.PubMedGoogle Scholar
  48. 48.
    L. F. Brown, A. J. Guidi, S. J. Schnitt, L. Van De Water, M. L. Iruela-Arispe, T. K. Yeo, K. Tognazzi, and H. F. Dvorak (1999). Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast. Clin. Cancer Res. 5:1041-1056.PubMedGoogle Scholar
  49. 49.
    M. Rohde, P. Warthoe, T. Gjetting, J. Lukas, J. Bartek, and M. Strauss (1996). The retinoblastoma protein modulates expression of genes coding for diverse classes of proteins including components of the extracellular matrix. Oncogene. 12:2393-2401.PubMedGoogle Scholar
  50. 50.
    E. Leygue, L. Snell, H. Dotzlaw, S. Troup, T. Hiller-Hitchcock, L. C. Murphy, P. J. Roughley, and P. H. Watson (2000). Lumican and decorin are differentially expressed in human breast carcinoma. J. Pathol. 192:313-320.PubMedGoogle Scholar
  51. 51.
    M. Santra, I. Eichstetter, and R. V. Iozzo (2000). An antioncogenic role for decorin. Down-regulation of erbB2 leads to growth suppression and cytodifferentiation of mammary carcinoma cells. J. Biol. Chem. 275:35153-35161.PubMedGoogle Scholar
  52. 52.
    R. R. Vivés, D. A. Pye, M. Salmivirta, J. J. Hopwood, U. Lindahl, and J. T. Gallagher (1999). Sequence analysis of heparan sulphate and heparin oligosaccharides. Biochem. J. 339:767-773.PubMedGoogle Scholar
  53. 53.
    C. L. Merry, M. Lyon, J. A. Deakin, J. J. Hopwood, and J. T. Gallagher (1999). Highly sensitive sequencing of the sulfated domains of heparan sulfate. J. Biol. Chem. 274:18455-18462.PubMedGoogle Scholar
  54. 54.
    S. K. Marsh, G. S. Bansal, C. Zammit, R. Barnard, R. Coope, D. Roberts-Clarke, J. J. Gomm, R. C. Coombes, and C. L. Johnston (1999). Increased expression of fibroblast growth factor 8 in human breast cancer. Oncogene 18:1053-1060.PubMedGoogle Scholar
  55. 55.
    A. Plath, R. Einspanier, C. Gabler, F. Peters, F. Sinowatz, D. Gospodarowicz, and D. Schams (1998). Expression and localization of members of the fibroblast growth factor family in the bovine mammary gland. J. Dairy Sci. 81:2604-2613.PubMedGoogle Scholar
  56. 56.
    P. S. Rudland, A. M. Platt-Higgins, M. C. Wilkinson, and D. G. Fernig (1993). Immunocytochemical identification of basic fibroblast growth factor in the developing rat mammary gland—variations in location are dependent on glandular structure and differentiation. J. Histochem. Cytochem. 41:887-898.PubMedGoogle Scholar
  57. 57.
    D. G. Fernig and J. T. Gallagher (1994). Fibroblast growth factors: An information network controlling tissue growth, morphogenesis and repair. Prog. Growth Factor Res. 5:353-377.PubMedGoogle Scholar
  58. 58.
    D. Jackson, J. Bresnick, I. Rosewell, T. Crafton, R. Poulsom, G. Stamp, and C. Dickson (1997). Fibroblast growth factor receptor signalling has a role in lobuloalveolar development of the mammary gland. J. Cell Sci. 110:1261-1268.PubMedGoogle Scholar
  59. 59.
    S. F. Penc, B. Pomahac, T. Winkler, R. A. Dorschner, E. Eriksson, M. Herndon, and R. L. Gallo (1998). Dermatan sulfate released after injury is a potent promoter of fibroblast growth factor-2 function. J. Biol. Chem. 273:28116-28121.PubMedGoogle Scholar
  60. 60.
    J. E. Turnbull, D. G. Fernig, Y. Q. Ke, M. C. Wilkinson, and J. T. Gallagher (1992). Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulfate. J. Biol. Chem. 267:10337-10341.PubMedGoogle Scholar
  61. 61.
    D. A. Pye and J. T. Gallagher (1999). Monomer complexes of basic fibroblast growth factor and heparan sulfate oligosaccharides are the minimal functional unit for cell activation. J. Biol. Chem. 274:13456-13461.PubMedGoogle Scholar
  62. 62.
    M. Ishihara (1994). Structural requirements in heparin for binding and activation of FGF-1 and FGF-4 are different from that for FGF-2. Glycobiology 4:817-824.PubMedGoogle Scholar
  63. 63.
    J. Kreuger, K. Prydz, R. F. Pettersson, U. Lindahl, and M. Salmivirta (1999). Characterization of fibroblast growth factor 1 binding heparan sulfate domain. Glycobiology 9:723-729.PubMedGoogle Scholar
  64. 64.
    D. G. Fernig, H. L. Chen, H. Rahmoune, S. Descamps, B. Boilly, and H. Hondermarck (2000). Differential regulation of FGF-1 and-2 mitogenic activity is related to their kinetics of binding to heparan sulfate in MDA-MB-231 human breast cancer cells. Biochem. Biophys. Res. Commun. 267:770-776.PubMedGoogle Scholar
  65. 65.
    D. Bonneh-Barkay, M. Shlissel, B. Berman, E. Shaoul, A. Admon, I. Vlodavsky, D. J. Carey, V. K. Asundi, R. Reich-Slotky, and D. Ron (1997). Identification of glypican as a dual modulator of the biological activity of fibroblast growth factors. J. Biol. Chem. 272:12415-12421.PubMedGoogle Scholar
  66. 66.
    B. Berman, O. Ostrovsky, M. Shlissel, T. Lang, D. Regan, I. Vlodavsky, R. Ishai-Michaeli, and D. Ron (1999). Similarities and differences between the effects of heparin and glypican-1 on the bioactivity of acidic fibroblast growth factor and the keratinocyte growth factor. J. Biol. Chem. 274:36132-36138.PubMedGoogle Scholar
  67. 67.
    L. Pellegrini, D. F. Burke, F. von Delft, B. Mulloy, and T. L. Blundell (2000). Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407:1029-1034.PubMedGoogle Scholar
  68. 68.
    A. N. Plotnikov, J. Schlessinger, S. R. Hubbard, and M. Mohammadi (1999). Structural basis for FGF receptor dimerization and activation. Cell 98:641-650.PubMedGoogle Scholar
  69. 69.
    A. N. Plotnikov, S. R. Hubbard, J. Schlessinger, and M. Mohammadi (2000). Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity. Cell 101:413-424.PubMedGoogle Scholar
  70. 70.
    D. J. Stauber, A. D. DiGabriele, and W. A. Hendrickson (2000). Structural interactions of fibroblast growth factor receptor with its ligands. Proc. Natl. Acad. Sci. U.S.A. 97:49-54.PubMedGoogle Scholar
  71. 71.
    J. Schlessinger, A. N. Plotnikov, O. A. Ibrahimi, A. V. Eliseenkova, B. K. Yeh, A. Yayon, R. J. Linhardt, and M. Mohammadi (2000). Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell. 6:743-750.PubMedGoogle Scholar
  72. 72.
    M. Delehedde, M. Seve, N. Sergeant, M. Lyon, P. S. Rudland, and D. G. Fernig (2000). FGF-2 stimulation of p42/44MAPK phosphorylation and IkB degradation is regulated by heparan sulfate/heparin in rat mammary fibroblasts. J. Biol. Chem. 275:33905-33910.PubMedGoogle Scholar
  73. 73.
    M. A. Nugent and E. R. Edelman (1992). Kinetics of basic fibroblast growth factor binding to its receptor and heparan sulfate proteoglycan—a mechanism for cooperativity. Biochemistry. 31:8876-8883.PubMedGoogle Scholar
  74. 74.
    M. Fannon and M. A. Nugent (1996). Basic fibroblast growth factor binds its receptors, is internalized, and stimulates DNA synthesis in Balb/c3T3 cells in the absence of heparan sulfate. J. Biol. Chem. 271:17949-17956.PubMedGoogle Scholar
  75. 75.
    L. Lundin, H. Larsson, J. Kreuger, S. Kanda, U. Lindahl, M. Salmivirta, and L. Claesson-Welsh (2000). Selectively desulfated heparin inhibits FGF-induced mitogenicity and angiogenesis. J. Biol. Chem. 275:24653-24660.PubMedGoogle Scholar
  76. 76.
    B. Niranjan, L. Buluwela, J. Yant, N. Perusinghe, A. Atherton, D. Phippard, T. Dale, B. Gusterson, and T. Kamalati (1995). HGF/SF: A potent cytokine for mammary growth, morphogenesis and development. Development 121:2897-2908.PubMedGoogle Scholar
  77. 77.
    S. E. Wilson, J. Weng, E. L. Chwang, L. Gollahon, A. M. Leitch, and J. W. Shay (1994). Hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), and their receptors in human breast cells and tissues: Alternative receptors. Cell Mol. Biol. Res. 40:337-350.PubMedGoogle Scholar
  78. 78.
    V. Brinkmann, H. Foroutan, M. Sachs, K. M. Weidner, and W. Birchmeier (1995). Hepatocyte growth factor scatter factor induces a variety of tissue-specific morphogenic programs in epithelial cells. J. Cell Biol. 131:1573-1586.PubMedGoogle Scholar
  79. 79.
    J. A. Deakin, and M. Lyon (1999). Differential regulation of hepatocyte growth factor/scatter factor by cell surface proteoglycans and free glycosaminoglycan chains. J. Cell Sci. 112:1999-2009.PubMedGoogle Scholar
  80. 80.
    M. Lyon, J. A. Deakin, H. Rahmoune, D. G. Fernig, T. Nakamura, and J. T. Gallagher (1998). Hepatocyte growth factor/scatter factor binds with high affinity to dermatan sulphate. J. Biol. Chem. 273:271-278.PubMedGoogle Scholar
  81. 81.
    M. Lyon, J. A. Deakin, K. Mizuno, T. Nakamura, and J. T. Gallagher (1994). Interaction of hepatocyte growth factor with heparan sulfate—elucidation of the major heparan sulfate structural determinants. J. Biol. Chem. 269:11216-11223.PubMedGoogle Scholar
  82. 82.
    N. Sergeant, M. Lyon, P. S. Rudland, D. G. Fernig, and M. Delehedde (2000). Stimulation of DNA synthesis and cell proliferation of human mammary myoepithelial-like cells by hepatocyte growth factor/scatter factor depends on heparan sulfate proteoglycans and sustained phosphorylation of mitogen-activated protein kinases p42/44. J. Biol. Chem. 275:17094-17099.PubMedGoogle Scholar
  83. 83.
    D. Ledoux, D. Caruelle, J. C. Sabourin, J. Liu, M. Crepin, D. Barritault, and J. Courty (1997). Cellular distribution of the angiogenic factor heparin affin regulatory peptide (HARP) mRNA and protein in the human mammary gland. J. Histochem. Cytochem. 45:1239-1245.PubMedGoogle Scholar
  84. 84.
    F. Vacherot, J. Delbe, M. Heroult, D. Barritault, D. G. Fernig, and J. Courty (1999). Glycosaminoglycans differentially bind HARP and modulate its biological activity. J. Biol. Chem. 274:7741-7747.PubMedGoogle Scholar
  85. 85.
    I. Bernard-Pierrot, M. Heroult, G. Lemaitre, D. Barritault, J. Courty, and P. E. Milhiet (1999). Glycosaminoglycans promote HARP/PTN dimerization. Biochem. Biophys. Res. Commun. 266:437-442.PubMedGoogle Scholar
  86. 86.
    C. M. Alexander, F. Reichsman, M. T. Hinkes, J. Lincecum, K. A. Becker, S. Cumberledge, and M. Bernfield (2000). Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Nat. Genet. 25:329-332.PubMedGoogle Scholar
  87. 87.
    I. A. Forsyth, J. A. Taylor, and C. D. Moorby (1998). DNA synthesis by ovine mammary alveolar epithelial cells: Effects of heparin, epidermal growth factor-related peptides and interaction with stage of pregnancy. J. Endocrinol. 156:283-290.PubMedGoogle Scholar
  88. 88.
    N. J. Kenney, G. H. Smith, K. Rosenberg, M. L. Cutler, and R. B. Dickson (1996). Induction of ductal morphogenesis and lobular hyperplasia by amphiregulin in the mouse mammary gland. Cell Growth Differ. 7:1769-1781.PubMedGoogle Scholar
  89. 89.
    R. V. Iozzo, D. K. Moscatello, D. J. McQuillan, and I. Eichstetter (1999). Decorin is a biological ligand for the epidermal growth factor receptor. J. Biol. Chem. 274:4489-4492.PubMedGoogle Scholar
  90. 90.
    P. Laine, N. Reunanen, L. Ravanti, M. Foschi, M. Santra, R. V. Iozzo, and V. M. Kahari (2000). Activation of extracellular signal-regulated protein kinase1,2 results in down-regulation of decorin expression in fibroblasts. Biochem. J. 349:19-25.PubMedGoogle Scholar
  91. 91.
    T. A. McCaffrey, D. J. Falcone, and B. Du (1992). Transforming growth factor-beta 1 is a heparin-binding protein: Identification of putative heparin-binding regions and isolation of heparins with varying affinity for TGF-beta 1. J. Cell. Physiol. 152:430-440.PubMedGoogle Scholar
  92. 92.
    M. Lyon, G. Rushton, and J. T. Gallagher (1997). The interaction of the transforming growth factor-βs with heparin/heparan sulphate is isoform specific. J. Biol. Chem. 272:18000-18006.PubMedGoogle Scholar
  93. 93.
    T. A. McCaffrey, D. J. Falcone, D. Vicente, B. Du, S. Consigli, and W. Borth (1994). Protection of transforming growth factor-beta 1 activity by heparin and fucoidan. J. Cell. Physiol. 159:51-59.PubMedGoogle Scholar
  94. 94.
    C. H. Heldin and B. Westermark (1999). Mechanism of action and in vivo role of platelet-derived growth factor. Physiol. Rev. 79:1283-1316.PubMedGoogle Scholar
  95. 95.
    Z. M. Shao, M. Nguyen, and S. H. Barsky (2000). Human breast carcinoma desmoplasia is PDGF initiated. Oncogene. 19:4337-4345.PubMedGoogle Scholar
  96. 96.
    R. M. Feakins, C. A. Wells, K. A. Young, and M. T. Sheaff (2000). Platelet-derived growth factor expression in phyllodes tumors and fibroadenomas of the breast. Hum. Pathol. 31:1214-1222.PubMedGoogle Scholar
  97. 97.
    F. Lustig, J. Hoebeke, C. Simonson, G. Ostergren-Lunden, G. Bondjers, U. Ruetchi, and G. Fager (1999). Processing of PDGF gene products determines interactions with glycosaminoglycans. J. Mol. Recognit. 12:112-120.PubMedGoogle Scholar
  98. 98.
    E. Feyzi, F. Lustig, G. Fager, D. Spillmann, U. Lindahl, and M. Salmivirta (1997). Characterization of heparin and heparan sulfate domains binding to the long splice variant of platelet-derived growth factor A chain. J. Biol. Chem. 272:5518-5524.PubMedGoogle Scholar
  99. 99.
    G. Neufeld, T. Cohen, S. Gengrinovitch, and Z. Poltorak (1999). Vascular endothelial growth factor (VEGF) and its receptors. Faseb J. 13:9-22.PubMedGoogle Scholar
  100. 100.
    S. Gengrinovitch, B. Berman, G. David, L. Witte, G. Neufeld, and D. Ron (1999). Glypican-1 is a VEGF165 binding proteoglycan that acts as an extracellular chaperone for VEGF165. J. Biol. Chem. 274:10816-10822.PubMedGoogle Scholar
  101. 101.
    D. J. Flint, E. Tonner, and G. J. Allan (2000). Insulin-like growth factor binding proteins: IGF-dependent and-independent effects in the mammary gland. J. Mammary Gland Biol. Neoplasia. 5:65-73.PubMedGoogle Scholar
  102. 102.
    T. Arai, A. Parker, W. Busby, and D. R. Clemmons (1994). Heparin, heparan sulfate, and dermatan sulfate regulate formation of the insulin-like growth factor-I and insulin-like growth factor-binding protein complexes. J. Biol. Chem. 269:20388-20393.PubMedGoogle Scholar
  103. 103.
    J. I. Jones, A. Gockerman, W. H. Busby, Jr., C. Camacho-Hubner, and D. R. Clemmons (1993). Extracellular matrix contains insulin-like growth factor binding protein-5: Potentiation of the effects of IGF-I. J. Cell Biol. 121:679-687.PubMedGoogle Scholar
  104. 104.
    A. Parker, J. B. Clarke, W. H. Busby, and D. R. Clemmons (1996). Identification of the extracellular matrix binding sites for insulin-like growth factor-binding protein 5. J. Biol. Chem. 271:13523-13529.PubMedGoogle Scholar
  105. 105.
    H. Song, J. Beattie, I. W. Campbell, and G. J. Allan (2000). Overlap of IGF-and heparin-binding sites in rat IGF-binding protein-5. J. Mol. Endocrinol. 24:43-51.PubMedGoogle Scholar
  106. 106.
    E. Schonherr, P. Witsch-Prehm, B. Harrach, H. Robenek, J. Rauterberg, and H. Kresse (1995). Interaction of biglycan with type I collagen. J. Biol. Chem. 270:2776-2783.PubMedGoogle Scholar
  107. 107.
    J. E. Scott and C. R. Orford (1981). Dermatan sulphate-rich proteoglycan associates with rat tail-tendon collagen at the d band in the gap region. Biochem. J. 197:213-216.PubMedGoogle Scholar
  108. 108.
    E. Hedbom and D. Heinegard (1993). Binding of fibromodulin and decorin to separate sites on fibrillar collagens. J. Biol. Chem. 268:27307-27312.PubMedGoogle Scholar
  109. 109.
    R. G. LeBaron, A. Hook, J. D. Esko, S. Gay, and M. Hook (1989). Binding of heparan sulfate to type V collagen. A mechanism of cell-substrate adhesion. J. Biol. Chem. 264:7950-7956.PubMedGoogle Scholar
  110. 110.
    J. D. Sanantonio, M. J. Karnovsky, S. Gay, R. D. Sanderson, and A. D. Lander (1994). Interactions of syndecan-1 and heparin with human collagens. Glycobiology 4:327-332.PubMedGoogle Scholar
  111. 111.
    G. G. Koliakos, K. Kouzi-Koliakos, L. T. Furcht, L. A. Reger, and E. C. Tsilibary (1989). The binding of heparin to type IV collagen: Domain specificity with identification of peptide sequences from the alpha 1(IV) and alpha 2(IV) which preferentially bind heparin. J Biol Chem. 264:2313-2323.PubMedGoogle Scholar
  112. 112.
    J. D. Sanantonio, A. D. Lander, M. J. Karnovsky, and H. S. Slayter (1994). Mapping the heparin-binding sites on type I collagen monomers and fibrils. J. Cell Biol. 125:1179-1188.PubMedGoogle Scholar
  113. 113.
    C. Giry-Lozinguez, E. Aubert-Foucher, F. Penin, G. Deleage, B. Dublet, and M. van der Rest (1998). Identification and characterization of a heparin binding site within the NC1 domain of chicken collagen XIV. Matrix Biol. 17:145-149.PubMedGoogle Scholar
  114. 114.
    D. J. Romberger (1997). Fibronectin. Int. J. Biochem. Cell. Biol. 29:939-943.PubMedGoogle Scholar
  115. 115.
    K. Sekiguchi, S. Hakomori, M. Funahashi, I. Matsumoto, and N. Seno (1983). Binding of fibronectin and its proteolytic fragments to glycosaminoglycans. Exposure of cryptic glycosaminoglycan-binding domains upon limited proteolysis. J. Biol. Chem. 258:14359-14365.PubMedGoogle Scholar
  116. 116.
    A. Walker and J. T. Gallagher (1996). Structural domains of heparan sulphate for specific recognition of the C-terminal heparin-binding domain of human plasma fibronectin (HEPII). Biochem. J. 317:871-877.PubMedGoogle Scholar
  117. 117.
    M. Lyon, G. Rushton, J. A. Askari, M. J. Humphries, and J. T. Gallagher (2000). Elucidation of the structural features of heparan sulfate important for interaction with the Hep-2 domain of fibronectin. J. Biol. Chem. 275:4599-4606.PubMedGoogle Scholar
  118. 118.
    A. Sharma, J. A. Askari, M. J. Humphries, E. Y. Jones, and D. I. Stuart (1999). Crystal structure of a heparin-and integrin-binding segment of human fibronectin. Embo J. 18:1468-1479.PubMedGoogle Scholar
  119. 119.
    S. Saoncella, F. Echtermeyer, F. Denhez, J. K. Nowlen, D. F. Mosher, S. D. Robinson, R. O. Hynes, and P. F. Goetinck (1999). Syndecan-4 signals cooperatively with integrins in a Rho-dependent manner in the assembly of focal adhesions and actin stress fibers. Proc. Natl. Acad. Sci. U.S.A. 96:2805-2810.PubMedGoogle Scholar
  120. 120.
    A. Woods and J. R. Couchman (1994). Syndecan-4 heparan sulfate proteoglycan is a selectively enriched and widespread focal adhesion component. Mol. Biol. Cell. 5:183-192.PubMedGoogle Scholar
  121. 121.
    E. S. Oh, A. Woods, S. T. Lim, A. W. Theibert, and J. R. Couchman (1998). Syndecan-4 proteoglycan cytoplasmic domain and phosphatidylinositol 4,5-bisphosphate coordinately regulate protein kinase C activity. J. Biol. Chem. 273:10624-10629.PubMedGoogle Scholar
  122. 122.
    H. Colognato and P. D. Yurchenco (2000). Form and function: The laminin family of heterotrimers. Dev. Dyn. 218:213-234.PubMedGoogle Scholar
  123. 123.
    U. Sung, J. J. O'Rear, and P. D. Yurchenco (1997). Localization of heparin binding activity in recombinant laminin G domain. Eur. J. Biochem. 250:138-143.PubMedGoogle Scholar
  124. 124.
    J. F. Talts, Z. Andac, W. Gohring, A. Brancaccio, and R. Timpl (1999). Binding of the G domains of laminin alpha1 and alpha2 chains and perlecan to heparin, sulfatides, alpha-dystroglycan and several extracellular matrix proteins. Embo J. 18:863-870.PubMedGoogle Scholar
  125. 125.
    A. S. Charonis, A. P. Skubitz, G. G. Koliakos, L. A. Reger, J. Dege, A. M. Vogel, R. Wohlhueter, and L. T. Furcht (1988). A novel synthetic peptide from the B1 chain of laminin with heparin-binding and cell adhesion-promoting activities. J. Cell. Biol. 107:1253-1260.PubMedGoogle Scholar
  126. 126.
    H. Colognato-Pyke, J. J. O'Rear, Y. Yamada, S. Carbonetto, Y. S. Cheng, and P. D. Yurchenco (1995). Mapping of network-forming, heparin-binding, and alpha 1 beta 1 integrin-recognition sites within the alpha-chain short arm of laminin-1. J. Biol. Chem. 270:9398-9406.PubMedGoogle Scholar
  127. 127.
    K. Kouzi-Koliakos, G. G. Koliakos, E. C. Tsilibary, L. T. Furcht, and A. S. Charonis (1989). Mapping of three major heparin-binding sites on laminin and identification of a novel heparin-binding site on the B1 chain. J. Biol. Chem. 264:17971-17978.PubMedGoogle Scholar
  128. 128.
    A. P. Skubitz, J. B. McCarthy, A. S. Charonis, and L. T. Furcht (1988). Localization of three distinct heparin-binding domains of laminin by monoclonal antibodies. J. Biol. Chem. 263:4861-4868.PubMedGoogle Scholar
  129. 129.
    N. Parthasarathy, L. F. Gotow, J. D. Bottoms, T. E. Kute, W. D. Wagner, and B. Mulloy (1998). Oligosaccharide sequence of human breast cancer cell heparan sulfate with high affinity for laminin. J. Biol. Chem. 273:21111-21114.PubMedGoogle Scholar
  130. 130.
    P. D. Yurchenco, Y. S. Cheng, and J. C. Schittny (1990). Heparin modulation of laminin polymerization. J. Biol. Chem. 265:3981-3991.PubMedGoogle Scholar
  131. 131.
    L. Schuger, A. P. Skubitz, K. Gilbride, R. Mandel, and L. He (1996). Laminin and heparan sulfate proteoglycan mediate epithelial cell polarization in organotypic cultures of embryonic lung cells: Evidence implicating involvement of the inner globular region of laminin beta 1 chain and the heparan sulfate groups of heparan sulfate proteoglycan. Dev. Biol. 179:264-273.PubMedGoogle Scholar
  132. 132.
    K. J. Williams and I. V. Fuki (1997). Cell-surface heparan sulfate proteoglycans: Dynamic molecules mediating ligand catabolism. Curr. Opin. Lipidol. 8:253-262.PubMedGoogle Scholar
  133. 133.
    A. Lookene, O. Chevreuil, P. Ostergaard, and G. Olivecrona (1996). Interaction of lipoprotein lipase with heparin fragments and with heparan sulfate: Stoichiometry, stabilization, and kinetics. Biochemistry 35:12155-12163.PubMedGoogle Scholar
  134. 134.
    I. V. Fuki, M. E. Meyer, and K. J. Williams (2000). Transmembrane and cytoplasmic domains of syndecan mediate a multi-step endocytic pathway involving detergent-insoluble membrane rafts. Biochem. J. 351:607-612.PubMedGoogle Scholar
  135. 135.
    I. V. Fuki, R. V. Iozzo, and K. J. Williams (2000). Perlecan heparan sulfate proteoglycan: A novel receptor that mediates a distinct pathway for ligand catabolism. J. Biol. Chem. 275:25742-25750.PubMedGoogle Scholar
  136. 136.
    R. A. Almeida, W. Fang, and S. P. Oliver (1999). Adherence and internalization of Streptococcus uberis to bovine mammary epithelial cells are mediated by host cell proteoglycans. FEMS Microbiol. Lett. 177:313-317.PubMedGoogle Scholar
  137. 137.
    D. S. Newburg (1999). Human milk glycoconjugates that inhibit pathogens. Curr. Med. Chem. 6:117-127.PubMedGoogle Scholar
  138. 138.
    I. Vlodavsky, J. Folkman, R. Sullivan, R. Fridman, R. Ishai-Michaeli, J. Sasse, and M. Klagsbrun (1987). Endothelial cell-derived basic fibroblast growth factor: Synthesis and deposition into subendothelial extracellular matrix. Proc. Natl. Acad. Sci. U.S.A. 84:2292-2296.PubMedGoogle Scholar
  139. 139.
    J. Folkman, M. Klagsbrun, J. Sasse, M. Wadzinski, D. Ingber, and I. Vlodavsky (1988). A heparin-binding angiogenic protein—basic fibroblast growth factor—is stored within basement membrane. Am. J. Pathol. 130:393-400.PubMedGoogle Scholar
  140. 140.
    A.-M. Gonzalez, M. Buscaglia, M. Ong, and A. Baird (1990). Distribution of basic fibroblast growth factor in the 18-day rat fetus: Localisation in the basement membranes of diverse tissues. J. Cell Biol. 110:753-765.PubMedGoogle Scholar
  141. 141.
    D. M. Ornitz, R. D. Cardiff, A. Kuo, and P. Leder (1992). Int-2, an autocrine and/or ultra-short-range effector in transgenic mammary tissue transplants. J. Natl. Cancer Inst. 84:887-892.PubMedGoogle Scholar
  142. 142.
    M. Kato, H. Wang, V. Kainulainen, M. L. Fitzgerald, S. Ledbetter, D. M. Ornitz, and M. Bernfield (1998). Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nat. Med. 4:691-697.PubMedGoogle Scholar
  143. 143.
    M. Mali, K. Elenius, H. M. Miettinen, and M. Jalkanen (1993). Inhibition of basic fibroblast growth factor-induced growth promotion by overexpression of syndecan-1. J. Biol. Chem. 268:24215-24222.PubMedGoogle Scholar
  144. 144.
    I. Vlodavsky, G. Korner, R. Ishai-Michaeli, P. Bashkin, R. Bar-Shavit, and Z. Fuks (1990). Extracellular matrix-resident growth factors and enzymes: Possible involvement in tumor metastasis and angiogenesis. Cancer and Metast. Rev. 9:203-226.Google Scholar
  145. 145.
    G. L. Nicolson, M. Nakajima, H. Wakabayashi, D. D. Boyd, D. Diaz, and T. Irimura (1998). Cancer cell heparanase activity associated with invasion and metastasis. Adv. Enz. Reg. 38:19-32.Google Scholar
  146. 146.
    D. S. Pikas, J. P. Li, I. Vlodavsky, and U. Lindahl (1998). Substrate specificity of heparanases from human hepatoma and platelets. J. Biol. Chem. 273:18770-18777.PubMedGoogle Scholar
  147. 147.
    I. Vlodavsky, Y. Friedmann, M. Elkin, H. Aingorn, R. Atzmon, R. Ishai-Michaeli, M. Bitan, O. Pappo, T. Peretz, I. Michal, L. Spector, and I. Pecker (1999). Mammalian heparanase: Gene cloning, expression and function in tumor progression and metastasis. Nat. Med. 5:793-802.PubMedGoogle Scholar
  148. 148.
    N. Shimamoto (1999). One-dimensional diffusion of proteins along DNA. Its biological and chemical significance revealed by single-molecule measurements. J. Biol. Chem. 274:15293-15296.PubMedGoogle Scholar
  149. 149.
    A. Lander (1999). Seeking the function of cell surface heparan sulphate proteoglycans. In A. Lander, H. Nakato, S. B. Selleck, J. E. Turnbull, and C. Coath (eds.), Cell Surface Proteoglycans in Signalling and Development. Human Frontier Science Program, Strasbourg, pp. 73-87.Google Scholar
  150. 150.
    D. B. Shennan and M. Peaker (2000). Transport of milk constituents by the mammary gland. Physiol. Rev. 80:925-951.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Maryse Delehedde
    • 1
  • Malcolm Lyon
    • 2
  • Nicolas Sergeant
    • 1
  • Hassan Rahmoune
    • 1
  • David G. Fernig
    • 1
  1. 1.School of Biological Sciences, Life Science BuildingUniversity of LiverpoolLiverpoolUnited Kingdom
  2. 2.Cancer Research Campaign Department of Medical OncologyUniversity of Manchester, Christie Hospital NHS TrustManchesterUnited Kingdom

Personalised recommendations