Advertisement

Refractories and Industrial Ceramics

, Volume 42, Issue 3–4, pp 93–97 | Cite as

Thermogravimetric Studies of Solid-Phase Reactions in the System MgO – Al2O3 – SiO2 and Their Analysis in Terms of Graph Theory

  • S. M. Logvinkov
  • G. D. Semchenko
  • D. A. Kobyzeva
  • L. P. Kolesnichenko
  • L. V. Rudenko
Article
  • 50 Downloads

Abstract

Changes in the phase composition of the MgO – Al2O3 – SiO2 system in the subsolidus region are studied by the thermogravimetric method. Specific features of the DTA curves are correlated with periodic changes in the concentration of phases involved in chemical reversible solid-phase reactions. Critical kinetic effects associated with conjugated solid-phase reactions in the MgO – Al2O3 – SiO2 system are discussed in terms of graph theory. The phase composition of materials with a dissipative structure is shown to form by a self-organization mechanism.

Keywords

Polymer SiO2 Al2O3 Graph Theory Phase Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    S. M. Logvinkov, G. D. Semchenko, and D. A. Kobyzeva, “On the mechanism of reversible chemical solid-phase reactions in the MgO – Al2O3 – SiO2 system,Ogneup. Tekh. Keram., No. 8, 29-34 (1998).Google Scholar
  2. 2.
    S. M. Logvinkov, G. D. Semchenko, and D. A. Kobyzeva, “Conjugated processes in the MgO – Al2O3 – SiO2 system and the oscillatory, autocatalized evolution of phase composition,” Ogneup. Tekh. Keram., No. 4, 6-13 (1999).Google Scholar
  3. 3.
    K. S. Krasnov (ed.), Physical Chemistry. Electrochemistry. Chemical Kinetics and Catalysis. Part 2 [in Russian], Vysshaya Shkola, Moscow (1995).Google Scholar
  4. 4.
    P. Field and M. Burger (eds.), Oscillations and TravellingWaves in Chemical Systems [Russian translation], Mir, Moscow (1988).Google Scholar
  5. 5.
    C. Berge, Théorie des Graphes et Ses Applications, Paris (1958).Google Scholar
  6. 6.
    V. A. Emelichev, O. I. Mel'nikov, V. I. Sarvanov, and R. I. Tyshkevich, Lectures on the Theory of Graphs [in Russian], Nauka, Moscow (1990).Google Scholar
  7. 7.
    A. N. Ivanova and B. L. Tarnopol'skii, “On an approach to the qualitative solution of problems in kinetic systems and its computerized implementation (critical effects and self-sustained oscillations),” Kinet. Katal., 20(6), 1541-1548 (1979).Google Scholar
  8. 8.
    G. S. Yablonskii, V. I. Bykov, and A. N. Gorban', Kinetic Models for Catalytic Reactions [in Russian], Nauka, Novosibirsk (1983).Google Scholar
  9. 9.
    A. I. Vol'pert, “Differentials equations on graphs,” Mat. Sb., 88(4), 578-588 (1972).Google Scholar
  10. 10.
    V. F. Pavlov, Z. O. Nemchenok, and V. S. Mitrokhin, “Synthesis of cordierite from low-melting components on the basis of magnesium-containing materials,” Steklo Keram., No. 1, 21-24 (1978).Google Scholar
  11. 11.
    A. S. Berezhnoi, Multicomponent Oxide Systems [in Russian], Naukova Dumka, Kiev (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • S. M. Logvinkov
    • 1
  • G. D. Semchenko
    • 1
  • D. A. Kobyzeva
    • 1
  • L. P. Kolesnichenko
    • 1
  • L. V. Rudenko
    • 1
  1. 1.Kharkov State Polytechnical University,Kharkov,Ukraine.

Personalised recommendations