Molecular Breeding

, Volume 7, Issue 2, pp 151–161

The tomato gene Sw5 is a member of the coiled coil, nucleotide binding, leucine-rich repeat class of plant resistance genes and confers resistance to TSWV in tobacco

  • Mariana I. Spassova
  • Theo W. Prins
  • Rolf T. Folkertsma
  • René M. Klein-Lankhorst
  • Jacques Hille
  • Rob W. Goldbach
  • Marcel Prins
Article

Abstract

Tomato spotted wilt virus is an important threat to tomato production worldwide. A single dominant resistance gene locus, Sw5, originating from Lycopersicon peruvianum, has been identified and introgressed in cultivated tomato plants. Here we present the genomic organization of a 35 250 bp fragment of a BAC clone overlapping the Sw5 locus. Two highly homologous (95%) resistance gene candidates were identified within 40 kb of the CT220 marker. The genes, tentatively named Sw5-a and Sw5-b, encode proteins of 1245 and 1246 amino acids, respectively, and are members of the coiled-coil, nucleotide-binding-ARC, leucine-rich repeat group of resistance gene candidates. Promoter and terminator regions of the genes are also highly homologous. Both genes significantly resemble the tomato nematode and aphid resistance gene Mi and, to a lesser extent, Pseudomonas syringae resistance gene Prf. Transformation of Nicotiana tabacum cv. SR1 plants revealed that the Sw5-b gene, but not the Sw5-a gene, is necessary and sufficient for conferring resistance against tomato spotted wilt virus.

Coiled coil Leucine-rich repeat NB-ARC Sw5 TSWV Virus resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarts N., Metz M., Holub E., Staskawitz B.J., Daniels M.J. and Parker J.E. 1998. Different requirement for EDS1 and NDR1 by disease resistance genes define at least two different signalling pathways in Arabidopsis. Proc. Natl. Acad. Sci. USA 95: 10306–10311.Google Scholar
  2. Altschul S.F., Madden T.L., Schaffer A.A., Zhang J.H., Zhang Z., Miller W. and Lipman D.J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389–3402.Google Scholar
  3. Àvila A.C., de Haan P., Kormelink R., Resende R., Goldbach R.W. and Peters D. 1993. Classification of tospoviruses based on phylogeny of nucleoprotein gene sequences. J. Gen. Virol. 74: 153–159.Google Scholar
  4. Bairoch A., Bucher P. and Hoffmann K. 1997. The PROSITE database, its status in 1997. Nucl. Acids. Res. 25: 217–221.Google Scholar
  5. Bendahmane A., Querci M., Kanyuka K. and Baulcombe D.C. 2000. Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato. Plant J. 21: 73–81.Google Scholar
  6. Boiteux L.S. and Giordano L de B. 1993. Genetic basis of resistance against two Tospovirus species in tomato (Lycopersicon esculentum). Euphytica 71: 151–154.Google Scholar
  7. Bonfield J.K., Smith K.F. and Staden R. 1995. A new DNA sequence assembly program. Nucl. Acids Res. 24: 4992–4999.Google Scholar
  8. Brommonschenkel S. and Tanksley S. 1997. Map-based cloning of the tomato genomic region that spans the Sw-5 tospovirus resistance gene in tomato. Mol. Gen. Genet. 256: 121–126.Google Scholar
  9. Brommonschenkel S.H., Tanksley S.D., Frary A., Otoni W.C. and Cheavegatti A. 1998. Positional cloning, molecular characterization and heterologous expression of the tospovirus resistance gene Sw-5. Abstract 5.4.7, 7th International Congress of Plant Pathology (Edinburgh, UK, 9-16 August 1998).Google Scholar
  10. Chagué V., Mercier J.C., Guénard M., de Courcel A. and Vedel F. 1996. Identification and mapping on chromosome 9 of RAPD markers linked to Sw-5 in tomato by bulked segregant analysis. Theor. Appl. Genet. 92: 1045–1051.Google Scholar
  11. Cooley M.B., Pathirana S., Wu H.J., Kachroo P. and Klessig D.F. 2000. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12: 663–676.Google Scholar
  12. Cook R.J. 1998. The molecular mechanisms responsible for resistance in plant-pathogen interactions of the gene-for-gene type function more broadly than previously imagined. Proc. Natl. Acad. Sci. USA 95: 9711–9712.Google Scholar
  13. Devereux J., Haeberli P. and Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucl. Acids Res. 12: 387–395.Google Scholar
  14. Dixon M.S., Jones D.A., Keddie J.S., Thomas C.M., Harrison K. and Jones J.D.G. 1996. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84: 451–459.Google Scholar
  15. Dixon M.S., Hatzixanthis K., Jones D.A., Harrison K. and Jones J.D.G. 1998. The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell 10: 1915–1925.Google Scholar
  16. Ellis J., Dodds P. and Pryor T. 2000. Structure function and evolution of plant resistance genes. Curr. Opin. Plant Biol. 3: 278–284.Google Scholar
  17. Ewing B. and Green P. 1998. Basecalling of automated sequencer traces using PHRED. II. Error probabilities. Genome Res. 8: 186–194.Google Scholar
  18. Ewing B., Hillier L., Wendl M.C. and Green P. 1998. Basecalling of automated sequencer traces using PHRED. I. Accuracy assessment. Genome Res. 8: 175–185.Google Scholar
  19. Fabian P., Murvai J., Hatsagi Z., Vlahovicek K., Hegyi H. and Pongor S. 1997. The SBASE protein domain library, release 5.0: a collection of annotated protein sequence segments. Nucl. Acids Res. 25: 240–243.Google Scholar
  20. Folkertsma R.T., Spassova M.I., Prins M., Stevens M.R., Hille J. and Goldbach R.W. 1999. Construction of a bacterial artificial chromosome (BAC) library of Lycopersicon esculentum cv. Stevens and its application to physically map the Sw-5 locus. Mol. Breed. 5: 197–207.Google Scholar
  21. Gish W. and States D.J. 1993. Identification of protein coding regions by database similarity search. Nature Genet. 3: 266–272.Google Scholar
  22. Goldbach R. and Peters D. 1994. Possible causes of the emergence of tospovirus diseases. Sem. Virol. 5: 113–120.Google Scholar
  23. Hehl R., Faurie E., Hesselbach J., Salamini F., Whitham S., Baker B. and Gebhardt C. 1999. TMV resistance gene N homologues are linked to Synchytrium endobioticum resistance in potato. Theor. Appl. Genet. 98: 379–386.Google Scholar
  24. Hofmann K. and Bucher P. 1998. The PCI domain: a common theme in three multiprotein complexes. Trends Biochem. Sci. 23: 204–205.Google Scholar
  25. Horsch R.B., Fry J.E., Hoffmann N.L., Eichholtz D., Rogers S.G. and Fraley R.T. 1985. A simple method for transferring genes into plants. Science 227: 1229–1231.Google Scholar
  26. Inoue-Nagata A.K., Kormelink R., Nagata T., Kitajima E.W., Goldbach R. and Peters D. 1997. Effects of temperature and host on the generation of tomato spotted wilt virus defective interfering RNAs. Phytopathology 87: 1168–1173.Google Scholar
  27. Jones D.A. and Jones J.D.G. 1997. The role of leucine-rich repeats in plant defences. Adv. Bot. Res. 24: 90–167.Google Scholar
  28. Jones D.A., Thomas C.M., Hammond-Kosack K.E., Balint-Kurti P.J. and Jones J.D.G. 1994. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266: 789–793.Google Scholar
  29. Jung C. 1998. A singular gene doubles up pest resistance. Nature Biotechnol. 16: 1315–1316.Google Scholar
  30. Klein-Lankhorst R.M., Rietveld P., Machiels B., Verkerk R., Weide R., Gebhardt C., Koornneef M. and Zabel P. 1991. RFLP markers linked to the root knot nematode resistance gene Mi in tomato. Theor. Appl. Genet. 81: 661–667.Google Scholar
  31. Lupas A. 1996. Coiled coils: new structures and new functions. Trends Biochem. Sci. 21: 375–382.Google Scholar
  32. Martin G.B., Brommonschenkel S.H., Chunwongse J., Frary A., Ganal M.W., Spivey R., Wu T., Earle E.D. and Tanksley S.D. 1993. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262: 1432–1436.Google Scholar
  33. McBride K.E. and Summerfelt K.R. 1990. Improved binary vectors for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 14: 269–276.Google Scholar
  34. Meyers B.C., Dickermann A.W., Michelmore R.W., Sivaramakrishnan S., Sobral B.W. and Young N.D. 1999. Plant disease resistance genes encode members of an ancient and divers protein family within the nucleotide binding superfamily. Plant J. 20: 317–332.Google Scholar
  35. Milligan S.B., Bodeau J., Yaghoobi J., Kaloshian I., Zabel P. and Williamson V.M. 1998. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10: 1307–1319.Google Scholar
  36. Mlynarova L., Jansen R.C., Conner A.J., StiekemaW.J. and Nap J.P. 1995. The MAR-mediated reduction in position effect can be uncoupled from copy number-dependent expression in transgenic plants. Plant Cell 7: 599–609.Google Scholar
  37. Ori N., Eshed Y., Paran I., Presting G., Aviv D., Tanksley S., Zamir D. and Fluhr R. 1997. The I2C family from the wilt disease resistance locus I 2 belongs to the nucleotide binding, leucinerich repeat superfamily of plant resistance genes. Plant Cell 9: 521–532.Google Scholar
  38. Pan Q., Wendel J. and Fluhr R. 2000. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J. Mol. Evol. 50: 203–213.Google Scholar
  39. Parniske M., Hammond-Kosack K.E., Golstein C., Thomas C.M., Jones D.A., Harrison K., Wulff B.B.H. and Jones J.D.G. 1997. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell 91: 821–832.Google Scholar
  40. Paul A.L. and Ferl R.J. 1999. Higher-order chromatin structure: looping molecules. Plant Mol. Biol. 41: 713–720.Google Scholar
  41. Prins M. and Goldbach R. 1998. The emerging problem of tospovirus infection and nonconventional methods of control. Trends Microbiol. 6: 31–35.Google Scholar
  42. Qiu W.P., Geske S.M., Hickey C.M. and Moyer J.W. 1998. Tomato spotted wilt Tospovirus genome reassortment and genome segment-specific adaptation. Virology 244: 186–194.Google Scholar
  43. Resende R. de O., de Haan P., de Àvila A.C., Kitajima E.W., Kormelink R., Goldbach R. and Peters D. 1991. Generation of envelope and defective interfering RNA mutants of tomato spotted wilt virus by mechanical passage. J. Gen. Virol. 72: 2375–2383.Google Scholar
  44. Rossi M., Goggin F.L., Milligan S.B., Kaloshian I., Ullman D.E. and Williamson V.M. 1998. The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc. Natl. Acad. Sci. USA 95: 9750–9754.Google Scholar
  45. Salmeron J.M., Oldroyd G.E.D., Rommens C.M.T., Scofield S.R., Kim H.-S., Lavelle D.T., Dahlbeck D. and Staskawicz B.J. 1994. Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86: 123–133.Google Scholar
  46. Sambrook J., Fritsch E.F. and Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, NY.Google Scholar
  47. Singh G.B., Kramer J.A. and Krawetz S.A. 1997. Mathematical model to predict regions of chromatin attachment to the nuclear matrix. Nucl. Acids Res. 25: 1419–1425.Google Scholar
  48. Smith P.G. 1944. Embryo culture of a tomato species hybrid. Proc. Am. Soc. Hort. Sci. 44: 413–416.Google Scholar
  49. Sorri V.A., Watanabe K.N. and Valkonen J.P.T. 1999. Predicted kinase-3a motif of a resistance gene analogue as a marker for virus resistance. Theor. Appl. Genet. 99: 164–170.Google Scholar
  50. Stevens J.M. 1964. Tomato Breeding. Project report W-Vv1, Department of Agricultural Technical Services, Republic of South Africa.Google Scholar
  51. Stevens M.R., Scott S.J. and Gergerich R.C. 1992. Inheritance of a gene for resistance to tomato spotted wilt virus (TSWV) from Lycopersicon peruvianum Mill. Euphytica 59: 9–17.Google Scholar
  52. Stevens M.R., Lamb E.M. and Rhoads D.D. 1995. Mapping the Sw-5 locus for tomato spotted wilt virus resistance in tomatoes using RAPD and RFLP analyses. Theor. Appl. Genet. 90: 451–456.Google Scholar
  53. Stief A., Winter D.M., Strätling W.H. and Sippel A.E. 1989. A nuclear DNA attachment element mediates elevated and positionindependent gene activity. Nature 341: 343–345.Google Scholar
  54. Tai T.H., Dahlbeck D., Clark E.T., Gajiwala P., Pasion R., Whalen M.C., Stall R.E. and Staskawicz B.J. 1999. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc. Natl. Acad. Sci. USA 96: 14153–14158.Google Scholar
  55. Takken F.L.W., Thomas C.M., Joosten M.H.A.J., Golstein C., Westerink N., Hille J., Nijkamp H.J.J., de Wit P.J.G.M. and Jones J.D.G. 1999. A second gene at the tomato Cf-4 locus confers resistance to Cladosporium fulvum through recognition of a novel avirulence determinant. Plant J. 20: 279–288.Google Scholar
  56. Thomas C.M., Jones D.A., Parniske M., Golstein C. and Jones J.D.G. 1997. Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell 9: 2209–2224.Google Scholar
  57. van der Biezen E.A. and Jones J.D.G. 1999. The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr. Biol. 8: 226–227.Google Scholar
  58. van der Vossen E.A.G., Rouppe van der Voort J.N.A.M., Kanyuka K., Bendahmane A., Sandbrink H., Baulcombe D.C., Bakker J., Stiekema W.J. and Klein-Lankhorst R.M. 2000. Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. Plant J. 23: 567–576.Google Scholar
  59. Vos P., Simons G., Jesse T., Wijbrandi J., Heinen L., Hogers R., Frijters A., Groenendijk J., Diergaarde P., Reijans M., Fierens-Onstenk J., de Both M., Peleman J., Liharska T., Hontelez J. and Zabeau M. 1998. The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nature Biotechnol. 16: 1365–1369.Google Scholar
  60. Whitham S., Dinesh-Kumar S.P., Choi D., Hehl R., Corr C. and Baker B. 1994. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78: 1101–1115.Google Scholar
  61. Young N.D. 2000. The genetic architecture of resistance. Curr. Opin. Plant Biol. 3: 285–290.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Mariana I. Spassova
    • 1
  • Theo W. Prins
    • 2
  • Rolf T. Folkertsma
    • 2
  • René M. Klein-Lankhorst
    • 3
  • Jacques Hille
    • 1
  • Rob W. Goldbach
    • 2
  • Marcel Prins
    • 2
  1. 1.Department Molecular Biology of PlantsGroningen UniversityHarenNetherlands
  2. 2.Laboratory of VirologyWageningen UniversityWageningenNetherlands
  3. 3.Greenomics, Plant Research International BVWageningenNetherlands

Personalised recommendations