Advertisement

Neural Processing Letters

, Volume 13, Issue 3, pp 237–251 | Cite as

Temporal Kohonen Map and the Recurrent Self-Organizing Map: Analytical and Experimental Comparison

  • Markus Varsta
  • Jukka Heikkonen
  • Jouko Lampinen
  • José Del R. Millán
Article

Abstract

This paper compares two Self-Organizing Map (SOM) based models for temporal sequence processing (TSP) both analytically and experimentally. These models, Temporal Kohonen Map (TKM) and Recurrent Self-Organizing Map (RSOM), incorporate leaky integrator memory to preserve the temporal context of the input signals. The learning and the convergence properties of the TKM and RSOM are studied and we show analytically that the RSOM is a significant improvement over the TKM, because the RSOM allows simple derivation of a consistent learning rule. The results of the analysis are demonstrated with experiments.

convergence analysis self-organizing maps temporal sequence processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bishop, C. M.: Neural Networks for Pattern Recognition, Oxford University Press, (1995).Google Scholar
  2. 2.
    Carpinteiro, O. A. S.: A hierarchical self-organizing map model for sequence recognition, In: Proceedings of ICANN '98, September (1998), pp. 816-820.Google Scholar
  3. 3.
    Chappel, G. J. and Taylor, J. G.: The temporal Kohenen map, Neural Networks, 6 (1993), 441-445Google Scholar
  4. 4.
    Cottrell, M.: Theoretical aspects of the som algorithm, In: Proceedings of WSOM '97, Workshop on Self-Organizing Maps, Helsinki University of Technology, Neural Networks Research Centre, Espoo, Finland, June (1997), pp. 246-267.Google Scholar
  5. 5.
    Cottrell, M.: Theoretical aspects of the som algorithm, Neurocomputing, 21 (1998), 119-138.Google Scholar
  6. 6.
    Erwin, E., Obermeyer, K. and Schulten, K.: Self-organizing maps: ordering, convergence properties and energy functions, Biological Cybenetics, 67 (1992), 47-55.Google Scholar
  7. 7.
    Kangas, J.: On the Analysis of Pattern Sequences by Self-OrganizingMaps, PhD thesis, Helsinki University of Technology, Espoo, Finland, (1994).Google Scholar
  8. 8.
    Kohenen, T.: The hypermap architecture, In: T. Kohenen, K. MÌkisara, O. Simula and J. Kangas, (eds), Artificial Neural Networks, Vol. II, Amsterdam, Netherlands, North-Holland, (1991), pp. 1357-1360.Google Scholar
  9. 9.
    Kohenen, T.: Things you have'nt heard about the Self-Organizing Map, In: Proceedings of the ICNN '93, International Conference on Neural Networks, Piscataway, NJ, IEEE, IEEE Service Center, (1993), pp. 1147-1156.Google Scholar
  10. 10.
    Kohenen, T.: Self-Organizing Maps, Vol. 30 of Lecture Notes in Information Sciences, Springer, 2nd Edn, (1997).Google Scholar
  11. 11.
    Koskela, T., Varsta, M., Heikkonen, J. and Kaski, K.: Prediction using rsom with local linear models, Int Journal of Knowledge-Based Intelligent Engineering Systems, 2(1) (1998), 60-68.Google Scholar
  12. 12.
    Leinonen, L., Kangas, J., Torkkola, K. and Juvas, A.: Dysphonia detected by pattern recognition of spectral composition, J. Speech and Hearing Res., 35 April (1992), 287-295.Google Scholar
  13. 13.
    Luttrell, S. P.: Image compression using a multilayer neural network, Pattern Recognition Letters, 10 (1989), 1-7.Google Scholar
  14. 14.
    Proakis, G. and Manolakis, D. G.: Digital Signal Processing: Principles, Algorithms, and Applications, Macmillan Publishing Company, (1992).Google Scholar
  15. 15.
    Tryba, V. and Goser, K.: Self-Organizing Feature Maps for process control in chemistry. In: T. Kohonen, K. MÌkisara, O. Simula and J. Kangas, (eds), Artificial Neural Networks, Amsterdam, Netherlands, North-Holland, (1991), pp. 847-852.Google Scholar
  16. 16.
    Varsta, M., del Ruiz Millän, J. and Heikkonen, J.: A recurrent self-organizing map for temporal sequence processing, In: Proceedings of the ICANN '97, Springer-Verlag, Berlin, Heidelberg, New York, October 1997. ISBN 3-540-63631-5.Google Scholar
  17. 17.
    Varsta, M., Heikkonen, J. and del Ruiz Millän, J.: Context learning with the self organizing map, In: Proceedings of WSOM '97, Workshop on Self-Organizing Maps, Helsinki University of Technology, Neural Networks Research Centre, June 1997.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Markus Varsta
    • 1
  • Jukka Heikkonen
    • 1
  • Jouko Lampinen
    • 1
  • José Del R. Millán
    • 2
  1. 1.Laboratory of Computational EngineeringHelsinki University of TechnologyFinland
  2. 2.Institute for Systems, Informatics and SafetyEuropean Commission, Joint Research CentreIspra (VA)Italy

Personalised recommendations