Advertisement

Journal of Mathematical Sciences

, Volume 105, Issue 6, pp 2550–2554 | Cite as

Stochastic Differential Equations with Discontinuous Drift in Hilbert Space with Applications to Interacting Particle Systems

  • L. Gawarecki
  • V. Mandrekar
Article

Keywords

Differential Equation Hilbert Space Stochastic Differential Equation Interact Particle Particle System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    S. Albeverio and R. Hoegh-Krohn, “Homogeneous random fields and statistical mechanics, ” J. Funct. Anal., 19, 242–272 (1975).Google Scholar
  2. 2.
    S. Albeverio, Yu. G. Kondratiev, M. Rockner, and T. V. Tsikalenko, Glauber Dynamics for Quantum Lattice Systems, Preprint (1999).Google Scholar
  3. 3.
    L. Gawarecki, V. Mandrekar, and P. Richard, “Existence of weak solutions for stochastic differential equations and martingale solutions for stochastic semilinear equations, ” Random Oper. Stoch. Eq., 7, No. 3, 215–240 (1999).Google Scholar
  4. 4.
    L. Gawarecki and V. Mandrekar, “Weak solutions to stochastic differential equations with discontinuous drift in Hilbert space, ” in: Proceedings of the Conference in Honor of S. Albeverio (to appear).Google Scholar
  5. 5.
    A. N. Godunov, “On Peano's theorem in Banach spaces, ” Funct. Anal. Appl., 9, 53–55 (1975).Google Scholar
  6. 6.
    G. Kallianpur, I. Mitoma, and R. L. Wolpert, “Diffusion equations in duals of nuclear spaces, ” Stoch. Stoch. Reports, 29, 285–329 (1990).Google Scholar
  7. 7.
    G. Leha and G. Ritter, “On solutions to stochastic differential equations with discontinuous drift in Hilbert space, ” Math. Ann., 270, 109–123 (1985).Google Scholar
  8. 8.
    A. V. Skorokhod, Personal communication.Google Scholar
  9. 9.
    M. Yor, “Existence et unicité de diffusions á valeurs dans un espace de Hilbert, ” Ann. Inst. Henri Poincaré, B10, 55–88 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • L. Gawarecki
    • 1
  • V. Mandrekar
    • 2
  1. 1.Kettering UniversityFlint
  2. 2.Michigan State UniversityEast Lansing

Personalised recommendations