Advertisement

Mechanochemistry of Solids: Past, Present, and Prospects

  • V. V. Boldyrev
  • K. Tkáčová
Article

Abstract

A historical retrospective is presented beginning from the early observations by alchemists to the establishment of mechanochemistry as a branch of science. The changes in structure and chemical properties of solids under three-axes loading and by combined action of pressure and shift are demonstrated. The peculiarities of the phenomena taking place upon stressing of particle assemblies in various types of energy-intensive grinding mills are discussed. Based on the contemporary concepts, the mechanism of stress field formation and relaxation is analyzed. Among decisive factors influencing the mechanochemical synthesis, the formation and renewal of contact area between reacting compounds, the explosive evolution of heat, and the feedback phenomenon are emphasized. The perspective directions of practical application in the area known as mechanical alloying, as well as in preparation of functional ceramics and catalysts, and in pharmacy are discussed. The main directions for improving research, construction of milling devices, training of specialists, and exchange of knowledge are proposed.

Mechanochemistry hydrostatic pressure effect combined action of pressure with shear treating of particulate assemblies technological applications of mechanochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    W. Ostwald, Lehrbuch der Allgemeinen Chemie, Bd.2 Stöchiometrie (Engelmann, Leipzig, 1891), 1163 S.Google Scholar
  2. 2.
    M. Carey Lea, Phil. Mag. 34, 46 (1892).Google Scholar
  3. 3.
    M. Carey Lea, Amer. J. Sci. 46, 413 (1893).Google Scholar
  4. 4.
    L. Takacs, J. Minerals Met. Mater. Soc. 52, 12 (2000).Google Scholar
  5. 5.
    F. M. Flavitsky, Russ. Zh. Phyz. Khim. 34, 8 (1902).Google Scholar
  6. 6.
    L. H. Parker, J. Chem. Soc. 105, 1504 (1914); J. Chem. Soc. 113, 396 (1918).Google Scholar
  7. 7.
    G. Tammann, Textbook of Metallurgy, vol. 4, Auflage. (Voss, Leipzig, 1932).Google Scholar
  8. 8.
    G. Tammann, and R. Kohlhaus, Z. Anorg. Allgem. Chem. 199, 209 (1931).Google Scholar
  9. 9.
    J. Cohen and W. Schmidt, Piezochemie, Kondensierten Systems (Akademie-Verlig, Leipzig, 1919).Google Scholar
  10. 10.
    P. W. Bridgeman, Rev. Modern Phys. 18, 1 (1946).Google Scholar
  11. 11.
    H. Muraur, Arfller. Fr. 12, 559 (1933).Google Scholar
  12. 12.
    F. P. Bowden, and D. Tabor, The Friction and Lubrication of Solids (Clarendon Press, Oxford, 1958), 372 p.Google Scholar
  13. 13.
    F. Bowden and A. Yoffe, Initiation and Growth of Explosion in Liquids and Solids (Cambridge Univ. Press, Cambridge, 1952), 104 p.Google Scholar
  14. 14.
    F. P. Bowden and A. Yoffe, Fast Reactions in Solids (Butterworths, London, 1958), 163 p.Google Scholar
  15. 15.
    N. A. Holevo, Proc. Kirov Inst. Chem. Technol. Kazan. 10, 91 (1946).Google Scholar
  16. 16.
    P. Wanetig, Textilforschung 4, 154 (1922), Texilforschung. 3, 66 (1925).Google Scholar
  17. 17.
    P. Wanetig, Kolloid Z. 41, 152 (1927).Google Scholar
  18. 18.
    H. Staudinger and E. Dreher, Ber. Deut. Chem. Ges. A 69, 1901 (1936).Google Scholar
  19. 19.
    K. Hess, E. Steurer, and E. Fromm, Kolloid Z. 98, 209 (1942).Google Scholar
  20. 20.
    A. A. Berlin, Uspekhi Khim. 27, 94 (1958).Google Scholar
  21. 21.
    P. Yu. Butyagin, Visokomolekulyarniye Soedineniya 9A, 136 (1967).Google Scholar
  22. 22.
    N. K. Baramboim, Mechanochemistry of Macromolecular Substances (Moscow, Khimiya, 1970), p. 357.Google Scholar
  23. 23.
    K. Simionesku, and K. Oprea, Mechanochemistry of Macromolecular Compounds, (Mir, Moskva, 1971), p. 357.Google Scholar
  24. 24.
    J. Clark, and R. J. Rovan, J. Amer. Chem. Soc. 63, 1302 (1941).Google Scholar
  25. 25.
    K. Peters and W. Cremer, Z. Angew. Chem. 47, 576 (1934).Google Scholar
  26. 26.
    K. Peters, in Proceedings of the 1st European Symposium on Comminution, H. Rumpf, ed. (Dechema Monographien, Frankfurt, 1962), p. 31.Google Scholar
  27. 27.
    A. H. Cottrell, The Mechanical Properties of Matter (Wiley, New York, 1964), pp. 78–98.Google Scholar
  28. 28.
    V. A. Karasev, N. A. Krotova, and B. V. Deryagin, Dokl. Akad. Nauk SSSR 88, 777 (1953).Google Scholar
  29. 29.
    P. A. Rebinder, in Proceedings of the Jubilee Session of the Academy of Sciences of USSR (Izdat. Akademii Nauk SSSR, Moskva, 1947), p. 55.Google Scholar
  30. 30.
    G. S. Khodakov and P. A. Rebinder, Dokl. Akad. Nauk SSSR 83, 1316 (1966).Google Scholar
  31. 31.
    P. A. Thiessen, K. Meyer, and G. Heinicke, Grundlagen der Tribochemie (Akademie-Verlag, Berlin, 1967).Google Scholar
  32. 32.
    R. Schaider and G. Tetzner, Z. Anorg. Allg. Chem. 309, 55 (1961).Google Scholar
  33. 33.
    T. Kubo, J. Chem. Soc. Jpn. Ind. Sec. 71, 1301 (1968).Google Scholar
  34. 34.
    T. J. Lin, S. Nadiv, and J. Grodzian. Mater. Sci. Eng. 7, 313 (1975).Google Scholar
  35. 35.
    V. V. Boldyrev and E. G. Avvakumov, Russ. Chem. Rev. 40, 847 (1971).Google Scholar
  36. 36.
    P. J. Butyagin, Russ. Chem. Rev. 40, 1935 (1971).Google Scholar
  37. 37.
    I. Hint, On Basic Problems of Mechanical Activation (Stroiizdat, Tallin, 1977).Google Scholar
  38. 38.
    V. V. Boldyrev and Klaus Meyer, Festkörperchemie, Beiträge aus Forschug und Praxis. (VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1973).Google Scholar
  39. 39.
    G. Heinicke, Tribochemistry (Akademie-Verlag, Berlin, 1984), p. 495.Google Scholar
  40. 40.
    E. G. Avvakumov, Mechanicheskie Metody Activazii Chimicheskikh Prozessov (Izd. Nauka, Novosibirsk, 1986), p. 305.Google Scholar
  41. 41.
    K. Tkáčová, Mechanical Activation of Minerals (Elsevier, Amsterdam, 1989), p. 156.Google Scholar
  42. 42.
    C. Suryanarayana, ed., Non-Equilibrium Processing of Materials (Pergamon, Oxford, 1999).Google Scholar
  43. 43.
    K. F. Herzfeld, Phys. Rev. 29, 701 (1927).Google Scholar
  44. 44.
    N. F. Mott, Proc. Roy. Phys. Soc. A 62, 416 (1949).Google Scholar
  45. 45.
    A. Cottrell, Introduction to the Modern Theory of Metals (Institute of Metals, London, 1988), p. 260.Google Scholar
  46. 46.
    H. G. Drickhamer and C. W. Frank, Electronic Transition and High Pressure Chemistry and Physics of Solids (Chapman & Hall, London, 1973), p. 220.Google Scholar
  47. 47.
    C. D. Schmulbach, F. Dachille, and M. Bunoh, Inorg. Chem. 3, 808 (1964).Google Scholar
  48. 48.
    H. E. Le-May, in Comprehensive Coordination Chemistry, vol. 2, Wilkinson, ed. (Pergamon Press, Oxford, 1987), pp. 463–473.Google Scholar
  49. 49.
    E. V. Boldyreva, Mol. Crystallogr. Liq. Crystals Nonlinear Optics, 242, 17 (1994).Google Scholar
  50. 50.
    M. Rutkonen, R. Fold, C. Veller, and M. Lehmann, Acta Crystallogr. B41, 77 (1985).Google Scholar
  51. 51.
    E. Boldyreva, T. Shakhtscheneider, M. Vasilchenko, H. Ahsbahs, and H. Uchtmann, Acta Crystallogr. B56, 299 (2000).Google Scholar
  52. 52.
    E. V. Boldyreva, H. Ahsbahs, and H. Uchtmann, Ber. Bunseng. Phys. Chem. 98, 738 (1994).Google Scholar
  53. 53.
    E. Boldyreva, S. Kuzmina, and H. Ahsbahs, Russ. J. Struct. Chem. 39, 934 (1998).Google Scholar
  54. 54.
    E. Boldyreva and A. Sidel'nikov, Izv. Sib. Otd. Akad. Nauk. Ser. Khim., pp. 139–145 (1987).Google Scholar
  55. 55.
    H. Drickhamer and L. L. Brag, Intern. Rev. Phys. Chem. 8, 46 (1986).Google Scholar
  56. 56.
    E. S. Larsen and P. Bridgman, Amer. J. Sci. 36, 81 (1938).Google Scholar
  57. 57.
    P. Bridgman and I. Simon, J. Appl. Phys. 24, 405 (1953).Google Scholar
  58. 58.
    F. Dachille and R. Roy, in Reactivity of Solids, Proceedings of the 4th International Symposium on the Reactivity of Solids, van Bier, ed. (Elsevier, Amsterdam, 1961), pp. 502–510.Google Scholar
  59. 59.
    F. Dachille, and R. Roy, J. Geol. 72, 243 (1964).Google Scholar
  60. 60.
    R. Z. Zeto and R. Roy, in Reactivity of Solids, Proceedings of the 6th International Symposium on the Reactivity of Solids, J. W. Mitchell, ed. [Wiley (Interscience), New York, 1969], pp. 803–810.Google Scholar
  61. 61.
    A. A. Zharov, in High Pressure Chemistry and Physics of Polymers, E. Kowarsky, ed. (CRC) Press, Boca Raton, FL 1994), Chap. 7.Google Scholar
  62. 62.
    A. A. Zharov, Russ. Chem. Rev. 33, 236 (1984).Google Scholar
  63. 63.
    A. A. Politov, B. A. Fursenko, and V. V. Boldyrev, Dokl. Akad. Nauk. SSSR 371, 28–31 (2000).Google Scholar
  64. 64.
    V. V. Neverov and P. P. Zhitnikov, Izv. Vuzov. Phys., pp. 10–15 (1994).Google Scholar
  65. 65.
    V. V. Neverov, V. H. Burov, and P. P. Zhitnikov, Izv. Sib. Otd. Akad. Nauk. Ser. Khim. 5, 54 (1983).Google Scholar
  66. 66.
    A. E. Arinsshtein, Dokl. Akad. Nauk SSSR 364, 778 (1999).Google Scholar
  67. 67.
    J. J. Gilman, Czech. J. Phys. 45, 913 (1995).Google Scholar
  68. 68.
    J. J. Gilman, Science 274, 65 (1996).Google Scholar
  69. 69.
    J. J. Gilman, Phil. Mag. 67B, 207 (1993).Google Scholar
  70. 70.
    K. Tkáčová, H. P. Heegn, and N. Stevulová, Intern. J. Mineral Proc. 40, 17 (1993).Google Scholar
  71. 71.
    P. Yu. Butyagin, Russ. Chem. Rev. 63, 1031 (1994).Google Scholar
  72. 72.
    N. Z. Lyakhov, in Proceedings of the Second Japan-Soviet Symposium on Mechanochemistry, G. Jimbo, M. Senna, and Y. Kuwahara, eds. (Soc. Powder Technology Japan, Tokyo, 1988), pp. 59–62.Google Scholar
  73. 73.
    F. Kh. Urakaev and V. V. Boldyrev, Powder Technol. 107, 197 (2000).Google Scholar
  74. 74.
    T. H. Courtney, Mater. Trans. 36, 110 (1995).Google Scholar
  75. 75.
    Yu. T. Pavlukhin, Ya. Ya. Medikov, and V. V. Boldyrev, Izv. Sib. Otd. Akad. Nauk. 2, 3, (1983).Google Scholar
  76. 76.
    V. V. Boldyrev, Kinet. Cat. 13, 1411 (1972).Google Scholar
  77. 77.
    I. Lin and S. Nadiv, Mater. Sci. Eng. 39, 193 (1979).Google Scholar
  78. 78.
    E. Yu. Ivanov, I. G. Konstanchuk, and V. V. Boldyrev, Reactivity Solids 7, 167 (1989).Google Scholar
  79. 79.
    E. Yu. Ivanov, B. Bokhonov, and I. Konstanchuk, J. Mater. Sci. 6, 1440 (1990).Google Scholar
  80. 80.
    Yu. T. Pavlukhin, Ya. Ya. Medikov, and V. V. Boldyrev, Izv. Sib. Otd. Akad. Nauk. 5, 46 (1983).Google Scholar
  81. 81.
    A. E. Yermakov, E. E. Yurchikov, E. P. Ylsukov, V. A. Barinov, and Yu. G. Chukalkin, Fiz. Tverd. Tela. (Kharkov) 24, 1947 (1982).Google Scholar
  82. 82.
    Yu. T. Pavlukhin and V. V. Boldyrev, Rev. Solid State Sci. 2, 603 (1988).Google Scholar
  83. 83.
    Yu. T. Pavlukhin, and Ya. Ya. Medikov, J. Solid State Chem. 53, 155 (1984).Google Scholar
  84. 84.
    V. V. Boldyrev, O. V. Jakovleva, Ya. Ya. Medikov, and Y. T. Pavlukhin. Dokl. Akad. Nauk. SSSR 268, 636 (1983).Google Scholar
  85. 85.
    K. Tkačova, V. Šepelak, N. Števulova, and V. V. Boldyrev, J. Solid State Chem. 123, 100 (1996).Google Scholar
  86. 86.
    V. Šepelak, U. Steinike, D. Uecker, R. Tretin, S. Wismann, and K. D. Becker, Solid State Ionics 101, 1343 (1997).Google Scholar
  87. 87.
    V. V. Boldyrev, E. G. Avvakumov, H. Harenz, G. Heinicke, and L. I. Strugova, Z. Anorg. Allg. Chem. 393, 152 (1972).Google Scholar
  88. 88.
    V. V. Boldyrev and G. Heinicke, Z. Chem. 19, 353 (1979).Google Scholar
  89. 89.
    V. V. Boldyrev, Z. Phys. Chem. 256, 342 (1975).Google Scholar
  90. 90.
    V. V. Boldyrev, F. Kh. Urakaev, V. R. Regel, and O. F. Pozdnjakov, Dokl. Akad. Nauk. SSSR. 21, 634 (1973).Google Scholar
  91. 91.
    F. Kh. Urakaev, V. V. Boldyrev, O. F. Pozdhjakov, and V. R. Regel, Kinet. Cat. 18, 350 (1977).Google Scholar
  92. 92.
    P. P. Budnikov and A. M. Ginstling, Principles of Solid State Chemistry (Maclaren, London, 1968), 454p.Google Scholar
  93. 93.
    M. Poux, P. Fayolle, J. Bertrand, D. Bardroux, and J. Bousquet, Powder Technol. 68, 213 (1991).Google Scholar
  94. 94.
    P. Yu. Butjagin, in Mekhanokhimicheskii Sintez v Neorganicheskoi Khimii, E. G. Avvakumov, ed. (Nauka, Novosibirsk, 1991), pp. 33–52.Google Scholar
  95. 95.
    P. Yu. Butyagin, Mater. Sci. Forum 88–90, 711 (1992).Google Scholar
  96. 96.
    G. F. Hüttig, in Handbuch der Katalyse, Bd. 6, G. Schwab, ed. (Springer Verlag, Wien, 1943), pp. 472–540.Google Scholar
  97. 97.
    G. F. Hüttig, Z. Elektrochem. Angew. Phys. Chem. 41, 527 (1935).Google Scholar
  98. 98.
    W. Jander, Angew. Chem. 49, 879 (1936).Google Scholar
  99. 99.
    T. Watanabe, T. Isobe, and M. Senna, J. Solid State Chem. 122, 74 (1996).Google Scholar
  100. 100.
    Y. Fujiwara, T. Isobe, M. Senna, and J. Tanaka, Trans. Mater. Res. Soc. Jpn. 25, 139 (2000).Google Scholar
  101. 101.
    I. J. Lin and S. Nadiv, in Proceedings of the XVI International Mineral Processing Congress, E. Forsberg, ed. (Elsevier, Amsterdam, 1988), pp. 231–242.Google Scholar
  102. 102.
    P. Baron, I. Lin, S. Nadiv, and M. Melamud, J. Thermal Anal. 42, 207 (1994).Google Scholar
  103. 103.
    A. E. Yermakov, E. E. Yurchikov, and V. A. Barinov, Fiz. Metal. Metalloved. 52, 1183 (1981).Google Scholar
  104. 104.
    K. B. Gerasimov and V. V. Boldyrev, Mater. Res. Bull. 31, 1297 (1996).Google Scholar
  105. 105.
    V. M. Zalkin, Nature of Eutectic Melts and the Effect of Contact Melting (Metallurgia, Moscow, 1987), p. 151.Google Scholar
  106. 106.
    E. G. Avvakumov, E. T. Devyatkina, and N. V. Kosova, J. Solid State Chem. 113, 379 (1994).Google Scholar
  107. 107.
    N. V. Kosova, E. T. Devyatkina, and E. G. Avvakumov, Siber. Chem. J. 2, 135 (1992).Google Scholar
  108. 108.
    M. Senna, T. Watanabe, and T. Isobe, Mater. Sci. Forum 225–227, 521 (1996).Google Scholar
  109. 109.
    V. V. Boldyrev, A. Kh. Khabibulin, N. V. Kosova, and E. G. Avvakumov, Inorg. Mater. 33, 1144 (1997).Google Scholar
  110. 110.
    N. V. Kosova, A. Kh. Khabibulin, and V. V. Boldyrev, Solid State Ionics 101–103, 53 (1997).Google Scholar
  111. 111.
    V. V. Boldyrev, A. Kh. Khabibulin, N. V. Kosova, and E. G. Avvakumov, J. Mater. Synthesis Proc. 4, 377 (1996).Google Scholar
  112. 112.
    G. Mi, F. Saito, and M. Hanada, Powder Technol. 93, 77 (1997).Google Scholar
  113. 113.
    J. Temunjin, K. Okada, and K. Mackenzie, J. Solid State Chem. 138, 169 (1998).Google Scholar
  114. 114.
    G. Tschakarov and G. Gospodinov, Z. Phys. Chem. 261, 340 (1980).Google Scholar
  115. 115.
    G. Tschakarov, G. Gospodinov, and V. Z. Bontsche, J. Solid State Chem. 41, 244 (1982).Google Scholar
  116. 116.
    L. Takacs, J. Solid State Chem. 125, 75 (1996).Google Scholar
  117. 117.
    L. Takacs, Mater. Sci. Forum 269–272, 513 (1998).Google Scholar
  118. 118.
    V. V. Boldyrev, V. A. Aleksandrov, V. I. Smirnov, K. B. Gerasimov, and E. Yu. Ivanov, Dokl. Akad. Nauk. SSSK 317, 663 (1991).Google Scholar
  119. 119.
    T. F. Grigorjeva, A. P. Barinova, G. N. Kryukova, V. D. Belykh, E. Yu. Ivanov, and V. V. Boldyrev, Mater. Sci. Forum. 269–272, 235 (1998).Google Scholar
  120. 120.
    G. B. Schaffer and P. G. MacCormick, Metal. Mater. Trans. 23A, 1285 (1996).Google Scholar
  121. 121.
    Ch. Gras, E. Gaffet, F. Bernard, A. Vrel, and J. C. Niepce, in Book of Abstracts of the Vth International Symposium on Self-Propagating High-Temperature Synthesis (SHS-99) (Moscow, 1999), p. 39.Google Scholar
  122. 122.
    O. I. Lomovsky, Computer Data Bank “Mechanochemistry” (Novosibirsk, 1993). Published by the Institute of Solid State Chemistry.Google Scholar
  123. 123.
    O. I. Lomovsky, in Proceedings of the 2nd International Confernce on Mechanochemistry and Mechanical Alloying, N. Z. Lyakhov, ed. (Novosibirsk, 1997), p. 140. Published by the Institute of Solid State Chemistry.Google Scholar
  124. 124.
    V. V. Boldyrev, Mater. Sci. Forum, 269–272, 227 (1998).Google Scholar
  125. 125.
    R. Roy, in Reactivity of Solids, Proceedings of the IX International Conference. Navorotsky, ed. [Wiley (Interscience), New York, 1988, pp. 1998–1921.Google Scholar
  126. 126.
    V. V. Boldyrev, A. S. Kolosov, M. V. Chaikina, and E. G. Avvakumov, Dokl. Akad. Nauk. SSSR 233, 892 (1977).Google Scholar
  127. 127.
    R. Pothig, L. Dunkel, and R. Paudert, Kristallogr. Technik. 13, 879 (1978).Google Scholar
  128. 128.
    M. Chaikina, G. Kryukov, and M. Tatarinzeva, Proc. Siber. Br. Acad. Sci. 5, 134 (1989).Google Scholar
  129. 129.
    V. Boldyrev, M. Chaikina, G. Kryukova, G. Litvak, and V. Zaikovskii, Dokl. Akad. Nauk SSSR 286, 1426 (1986).Google Scholar
  130. 130.
    R. Poudert, H. Harenz, and G. Heinicke, DDR-Patent WP 119569 (1976).Google Scholar
  131. 131.
    H. P. Heegn, K. Tkačová, G. Ludwig, C. Bernhardt, and K. Husemann, Chem. Technol. 30, 348 (1978).Google Scholar
  132. 132.
    I. Berkhin, I. Naumenko, and L. Pasashnikova, Siber. J. Agric., pp. 7–14 (1979).Google Scholar
  133. 133.
    K. Tkáčová, Mechanical Activation in Mineral Processing and Treatment (Veda Vydavatel'stvo SAV, Bratislav, 1984).Google Scholar
  134. 134.
    K. Tkáčová and P. Baláz, Hydrometallurgy 21, 103 (1988).Google Scholar
  135. 135.
    R. Paudert, H. Harenz, G. Heinicke, L. Dunkel, L. Bottig, A. Kolosov, V. Boldyrev, and M. Chaikina, DDR-Patent. CO5B/205660, (1985).Google Scholar
  136. 136.
    K. Tkáčová, and N. Števulová, Thermochim. Acta 93, 713 (1985).Google Scholar
  137. 137.
    K. Tkáčová, P. Baláž, and T. A. Korneva, J. Therm. Anal. 34, 1031 (1988).Google Scholar
  138. 138.
    V. P. Chuev. L. A. Lyagina, E. Yu. Ivanov, and V. V. Boldyrev, Dokl. Akad. Nauk SSSR 307, 1429 (1989).Google Scholar
  139. 139.
    V. P. Chuev, L. A. Lyagina, S. N. Kovalenko, and E. Yu. Ivanov, Siberian J. Chem. 5, 158 (1991).Google Scholar
  140. 140.
    E. Ivanov, T. Grigorjeva, G. Golubkova, V. V. Boldyrev, and A. Fasman, Mater. Lett. 7, 51 (1988).Google Scholar
  141. 141.
    E. Ivanov, G. Grigoreva, and G. Golubkova, Reactions Solids 8, 77 (1990).Google Scholar
  142. 142.
    A. Fasman, S. Mikhailenko, O. Kalinina, E. Ivanov, and G. Golubkova, in Scientific Basis for the Preparation of Catalysis, 5th International Symposium B. Delmon, ed. (Louvain la Neuve, 1990), pp. 10–21.Google Scholar
  143. 143.
    K. Tkáčová, P. Baláž, and Z. Bastl, Thermochim. Acta 170, 277 (1990).Google Scholar
  144. 144.
    K. Tkáčová, P. Baláž, B. Mišura, and V. A. Chanturiya, Hydrometallurgy 33, 291 (1993).Google Scholar
  145. 145.
    J. Bade and H. Hoffmann, Chem. Eng. Commun. 143, 169 (1996).Google Scholar
  146. 146.
    M. Umemoto, Mater. Trans. Jpn. Inst. Met. 36, 373 (1995).Google Scholar
  147. 147.
    V. Boldyrev, N. Lyakhov, and M. Chaikina, Chem. Sustainable Develop. 4, 97 (1996).Google Scholar
  148. 148.
    E. Yu. Belyaev, O. I. Lomovsky, A. I. Ancharov, and B. P. Tolochko, Nucl. Instr. Methods Phys. Res. A405, 435 (1998).Google Scholar
  149. 149.
    E. Belyaev, S. Mamyloz, and O. Lomovsky, J. Mater. Sci. 35, 2029 (2000).Google Scholar
  150. 150.
    E. Belyaev, G. Suchkova, A. Ancharov, S. Avramchuk, N. Slavnikh, S. Mamylov, and O. Lomovsky, in Proceedings of the 4th Korea-Russia International Symposium on Science and Technology (Ulsan, Korea, 2000), pp. 357–360.Google Scholar
  151. 151.
    A. V. Dushkin, Z. Yu. Rykova, V. V. Boldyrev, E. A. Vinogradov, F. V. Guss, and V. P. Chetverikov, Patent RF N 2099058 (20.12.97).Google Scholar
  152. 152.
    A. Ellis, M. Geselbracht, M. Greenblat, B. Johnson, G. Lisensky, and R. S. Whittinham, J. Chem. Educ. 69, 1075 (1992).Google Scholar
  153. 153.
    A. B. Ellis, M. Geselbracht, M. Greenblat, B. Johnson, G. Lisensky, and R. S. Whittinham, Material Science Companion (Publ. Amer. Chem. Soc., Washington, D.C., 1993).Google Scholar
  154. 154.
    K. Tkáčová et al., Powder Technol. 83, 163 (1995).Google Scholar
  155. 155.
    K. Tkáčová et al., J. Mater. Res. 10, 2728 (1995).Google Scholar
  156. 156.
    V. V. Zyryanov and O. B. Isakova, Izv. Sib. Otd. Akad. Nauk. 3, 50 (1988).Google Scholar
  157. 157.
    N. Števulová, K. Tkáčová, and J. Lipka, Keram. Z. 44, 609 (1992).Google Scholar
  158. 158.
    G. Cocco, G. Mulas, and L. Shiffini, Mater. Trans. Jpn. Inst. Met. 36, 150 (1995).Google Scholar
  159. 159.
    K. Tkáčová and N. Števulová, Keram. Z. 45, 400 (1993).Google Scholar
  160. 160.
    J. Bade and H. Hoffmann, Chem. Eng. Commun. 143, 169 (1996).Google Scholar
  161. 161.
    E. M. Gutman, Mechanochemistry of Solid Surfaces (World Scientific, Singapore, 1994), 332 pp.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • V. V. Boldyrev
    • 1
  • K. Tkáčová
    • 2
  1. 1.Institute of Solid State Chemistry and Mechanochemistry of RAS (Novosibirsk)Novosibirsk State University, KutateladzeNovosibirskRussia
  2. 2.Civil Engineering FacultyTechnical University of KošiceKošiceSlovakia

Personalised recommendations