Journal of Mammalian Evolution

, Volume 8, Issue 1, pp 73–89 | Cite as

Molecular Relationships Among Octodontidae (Mammalia: Rodentia: Caviomorpha)

  • Milton H. Gallardo
  • John A. W. Kirsch


We examined ten species of octodontid rodents and representatives of three outgroups in a complete 13 × 13 DNA-hybridization matrix. The results were indexed as differences in median melting-point depressions (ΔT,ms), symmetrized, subjected to phylogenetic analysis using FITCH, bootstrapped, and exhaustively taxon-jackknifed. Within Octodontidae, four clades were recovered with 100% bootstrap and complete jackknife support: Tympanoctomys barrerae with Octomys mimax, Octodontomys gliroides alone, Octodon spp., and Aconaemys spp. with Spalacopus cyanus; the latter two clades were closer to each other than either was to Octodontomys or Octomys-Tympanoctomys, but were slightly nearer to and united with Octodontomys, with 89% bootstrap support. However, relationships among the three Aconaemys species and Spalacopus were not completely resolved by our experiments. Ctenomys coyhaiquensis, Abrocoma bennetti, and Lagostomus maximus represented successive outgroups to Octodontidae, while one-way comparisons with Cavia porcellus and Microcavia australis suggested that these caviids are almost as distant from octodontoids as is the chinchilloid Lagostomus. When the data were suitably corrected for percentage hybridization and saturation, division of the distances by the rate previously determined for most amniotes (∼0.48%/myr) suggested that the basal divergence among the caviomorph rodents examined occurred about 59 myrbp, and that Octodontidae originated 40 myrbp and diversified into extant lineages beginning 14 myr ago. Calibration against the date of the earliest known caviomorph (late Eocene or about 37.5 myrbp) gave a rate of 0.75%/myr, which would suggest later dates for subsequent caviomorph cladogenesis. It is notable that, based respectively on the slower or faster rates, the tetraploid Tympanoctomys barrerae must have diverged from its sister-taxon Octomys mimax ∼10 or 6.5 myr ago.

Hystricognath rodents molecular clock molecular evolution polyploidy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, S., and Jones, J. K. (1984). Orders and Families of Recent Mammals of the World, John Wiley & Sons, New York.Google Scholar
  2. Anderson, S., Yates, T. L., and Cook, J. A. (1987). Notes on Bolivian mammals 4: The genus Ctenomys (Rodentia, Ctenomyidae) in the eastern lowlands. Amer.Mus.Novitates 2891: 1–20.Google Scholar
  3. Begall, S., and Gallardo, M. H. (2000). Spalacopus cyanus (Octodontidae, Rodentia): An extremist in tunnel constructing and food storing among subterranean mammals. J.Zool.Lond 251: 53–60.Google Scholar
  4. Begall, S., Burda, H., and Gallardo, M. H. (1999). Reproduction, postnatal development, and growth of social coruros, Spalacopus cyanus (Rodentia, Octodontidae) from Chile. J.Mamm. 80: 210–217.Google Scholar
  5. Bleiweiss, R., and Kirsch, J. A. W. (1993). Experimental analysis of variance for DNA hybridization: II. Precision. J.Mol.Evol. 37: 514–524.Google Scholar
  6. Catzeflis, F. M., Sheldon, F. H., Ahlquist, J. E., and Sibley, C. G. (1987). DNA-DNA hybridization evidence of the rapid rate of muroid rodent DNA evolution. Mol.Biol.Evol. 4: 242–253.PubMedGoogle Scholar
  7. Catzeflix, F. M, Aguilar, J. P., and Jaeger, J. J. (1992). Muroid rodents: Phylogeny and evolution. Trends Ecol. Evol. 7: 122–126.Google Scholar
  8. Cavalli-Sforza, L. L., and Edwards, A. W. F. (1967). Phylogenetic analysis: Models and estimation procedures. Amer.J.Human Genet. 19: 233–257.Google Scholar
  9. Contreras, L. C., Torres-Mura, J. C., and Spotorno, A. E. (1993). Morphological variation of the glans penis of South American octodontid and abrocomid rodents. J.Mamm. 74: 926–935.Google Scholar
  10. D'El´ýa, G. D., Lessa, E. P., and Cook, J. A. (1999). Molecular phylogeny of tuco-tucos, genus Ctenomys (Rodentia:Octodontidae): Evaluation of the mendocinus species group and the evolution of asymmetric sperm. J.Mammal.Evol. 6: 19–38.Google Scholar
  11. Felsenstein, J. (1993). PHYLIP, Phylogenetic Inference Package, Program and Documentation, Version 3.5c, University of Washington, Seattle.Google Scholar
  12. Gallardo, M. H. (1992). Karyotypic evolution in octodontid rodents based on C-band analysis. J.Mamm. 73: 89–98.Google Scholar
  13. Gallardo, M. H. (1997). A saltation model of karyotypic evolution in the Octodontoidea (Mammalia, Rodentia). In: Chromosomes Today, Vol. 12, N. Henr´ýques-Gil, J. S. Parker, and M. J. Puertas, eds., pp. 347–365, Chapman and Hall, London.Google Scholar
  14. Gallardo, M. H., Bickham, J. W., Honeycutt, R. L., Ojeda, R. A., and K¨ohler, N. (1999). Discovery of tetraploidy in a mammal. Nature 401: 341.PubMedGoogle Scholar
  15. George, W., and Weir, B. J. (1974). Hystricomorph chromosomes. In: The Biology of Hysticognath Rodents, I. W. Rowlands and B. Weir, eds., pp. 79–108, Symposium Zoological Society, London.Google Scholar
  16. Glanz, W. E., and Anderson, S. (1990). Notes on Bolivian mammals, 7. A new species of Abrocoma (Rodentia) and relationships of the Abrocomidae. Amer.Mus.Novitates 2991: 1–32.Google Scholar
  17. Holmes, E. C. (1991). Different rates of substitution may produce different phylogenies of the eutherian mammals. J.Mol.Evol. 33: 209–215.PubMedGoogle Scholar
  18. Honacki, J. H., Kinman, K. E., and Koeppl, J. W. (1982). Mammal Species of the World.A Taxonomic and Geographic Reference, Allen Press Inc. and The Association of Systematics Collections, Lawrence, KS.Google Scholar
  19. Huchon, D., Catzeflis, F. M., and Douzery, E. J. P. (1999). Molecular evolution of the nuclear von Willebrand factor gene in mammals and the phylogeny of rodents. Mol.Biol.Evol. 16: 577–589.PubMedGoogle Scholar
  20. Huchon, D., Catzeflis, F. M., and Douzery, E. J. P. (2000). Variance of molecular datings, evolution of rodents and the phylogenetic affinities between Ctenodactylidae and Hystricognathi. Proc.R.Soc.Lond.B 267: 393–402.PubMedGoogle Scholar
  21. Hutterer, R. (1994). Island rodents: A new species of Octodon from Isla Mocha, Chile (Mammalia: Octodontidae). Z.S¨augetierkd. 59: 27–41.Google Scholar
  22. Kelt, D. A., and Gallardo, M. H. (1994). A new species of tuco-tuco, genus Ctenomys (Rodentia, Ctenomyidae) from Patagonian Chile. J.Mamm. 75: 338–348.Google Scholar
  23. Kirsch, J. A. W., Bleiweiss, R. E., Dickerman, A. W., and Reig, O. A. (1993). DNA/DNA hybridization studies of carnivorous marsupials. III. Relationships among species of Didelphis (Didelphidae). J.Mammal.Evol. 1: 75–97.Google Scholar
  24. Kirsch, J. A. W., Lapointe, F.-J., and Foeste, A. (1995). Resolution of portions of the kangaroo phylogeny (Marsupialia: Macropodidae) using DNA hybridization. Biol.J.Linn.Soc. 55: 309–328.Google Scholar
  25. Kirsch, J. A. W., Lapointe, F.-J., and Springer, M. S. (1997). DNA-hybridisation studies of marsupials and their implications for metatherian classification. Aust.J.Zool. 45: 211–280.Google Scholar
  26. Kirsch, J. A. W., Hutcheon, J. M., Byrnes, D. G. P, and Lloyd, B. D. (1998). Affinities and historical zoogeography of the New Zealand short-tailed bat, Mystacina tuberculata Gray 1843, inferred from DNAhybridization comparisons. J.Mammal.Evol. 5: 33–64.Google Scholar
  27. K¨ohler, N., Gallardo, M. H., Contreras, L. C., and Torres-Mura, J. C. (2000). Allozymic variation and systematic relationships of the Octodontidae and allied taxa (Mammalia, Rodentia). J.Zool. 252: 243–250.Google Scholar
  28. Krajewski, C., and Dickerman, A. W. (1990). Bootstrap analysis of phylogenetic trees derived from DNA hybridization distances. Syst.Zool. 39: 383–390.Google Scholar
  29. Lapointe, F.-J., Kirsch, J. A. W., and Bleiweiss, R. (1994). Jackknifing of weighted trees: Validation of phylogenies reconstructed from distance matrices. Mol.Phylogenet.Evol. 3: 256–267.PubMedGoogle Scholar
  30. Lee, M. S. Y. (1999). Molecular clock calibration and metazoan divergence dates. J.Mol.Evol. 49: 385–391.PubMedGoogle Scholar
  31. Maddison, W. P., and Maddison, D. R. (1993). MacClade Analysis of Phylogeny and Character Evolution Version 3. Sinauer Associates, Inc., Sunderland, MA.Google Scholar
  32. Mares, M. A., Braun, J. K., Barquez, R. M., and Diaz, M. M. (2000). Two new genera and species of halophytic desert mammals from isolated salt flats in Argentina. Occ.Pap.Mus.Tex.Tech.Univ., 203: 1–27.Google Scholar
  33. Martin, A. O., Naylor, G. J. P., and Palumbi, S. R. (1992). Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature 357: 153–155.PubMedGoogle Scholar
  34. Mindell, D. P., and Thacker, C. E. (1996). Rates of molecular evolution: Phylogenetic issues and applications. Ann.Rev.Ecol.Syst. 27: 279–303.Google Scholar
  35. Nedbal, M. A., Allard, M. W., and Honeycutt, R. L. (1994). Molecular systematics of hystricognath rodents: Evidence from the mitochondrial 12S rRNA gene. Mol.Phylogenet.Evol. 3: 206–220.PubMedGoogle Scholar
  36. Nowak, R. W. (1991). Walker's Mammals of the World, Fifth Edition, Vol. II. The Johns Hopkins University Press, Baltimore, MD.Google Scholar
  37. Page, R. D. M. (1996). TREEVIEW: An application to display phylogenetic trees on personal computers. Comput. Appl.Biosci. 12: 357–358.PubMedGoogle Scholar
  38. Ram´ýrez, O. E. (1998). Relaciones filogen´eticas entre los roedores Octodontoidea (Rodentia, Hystricognathi). Unpubl. Ph. D. Dissertation. Universidad Austral de Chile.Google Scholar
  39. Reig, O. A. (1989). Karyotypic repatternings as one triggering factor in cases of explosive speciation. In: Evolutionary Biology of Transient Populations. A. Fontdevila, ed., pp. 246–289, Springer Verlag, Berlin.Google Scholar
  40. Reig, O. A., and Kiblisky, P. (1969). Chromosome multiformity in the genus Ctenomys (Rodentia, Octodontidae). Chromosoma 22: 201–244.Google Scholar
  41. Reig, O. A., and Quintana, C. A. (1991). A new genus of fossil octodontine rodent from the early Pleistocene of Argentina. J.Mamm. 72: 292–299.Google Scholar
  42. Robinson, M., Catzeflis, M. F., Briolay, J., and Mouchiroud, D. (1997). Molecular phylogeny of rodents with special emphasis on murids. Evidence from nuclear gene LCAT. Mol.Phylogenet.Evol. 8: 423–434.PubMedGoogle Scholar
  43. Ruedas, L. A., and Kirsch, J. A. W. (1997). Systematics of Maxomys Sody, 1936 (Rodentia: Muridae: Murinae): DNA/DNA hybridization studies of some Borneo-Javan species and allied Sundaic and Australo-Papuan genera. Biol.J.Linn.Soc. 61: 385–408.Google Scholar
  44. Spencer, L. A. (1987). Fossil Abrocomidae and Octodontidae (Rodentia, Hystricina), a phylogenetic analysis. Unpubl. Ph. D. dissertation. Loma Linda University, California, USA.Google Scholar
  45. Springer, M. S., and Kirsch, J. A. W. (1991). DNA hybridization, the compression effect, and the radiation of diprotodontian marsupials. Syst.Zool. 40: 131–151.Google Scholar
  46. Verzi, D. H. (1994). Or´ýgen y evoluci´on de los Ctenomyinae (Rodentia, Octodontidae): un an´alisis de anatom´ýa cr´aneo-dentaria. Unpubl. Ph. D. dissertation, Universidad Nacional de La Plata, Argentina.Google Scholar
  47. Vucetich, M. G., and Verzi, D. H. (1991). Un nuevo Echimyidae (Rodentia, Hystricognathi) de la edad Colhuehuapense de Patagonia y consideraciones sobre la sistem´atica de la familia. Ameghiniana 28: 67–74.Google Scholar
  48. Wilson, D. E., and Reeder, DA. M. (1993). Mammal Species of the World.A Taxonomic and Geographic Reference, Second Edition.Smithsonian Institution Press, Washington.Google Scholar
  49. Wyss, A. R., Flynn, J. J., Norell, M. A., Swisher, C. C., Charrier, R., Novacek, M., and McKenna, M. C. (1993). South America's earliest rodent and recognition of a new interval of mammalian evolution. Nature 365: 434–437.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Milton H. Gallardo
    • 1
  • John A. W. Kirsch
    • 2
  1. 1.Instituto de Ecología y EvoluciónUniversidad Austral de ChileValdiviaChile
  2. 2.University of Wisconsin Zoological MuseumMadison

Personalised recommendations