Journal of Mammalian Evolution

, Volume 8, Issue 1, pp 1–71

The Morphology of Tribosphenomys (Rodentiaformes, Mammalia): Phylogenetic Implications for Basal Glires

Article

Abstract

We provide the first full description of the rodentiaform Tribosphenomys minutus from the late Paleocene Bayan Ulan locality of Inner Mongolia, China. All material presently referable to the taxon is treated, including the holotype plus more recently discovered teeth, jaws, and postcranial elements. To elucidate the phylogenetic placement of Tribosphenomys, a suite of 82 osteological characters across 36 terminal taxa was sampled and analyzed. A data matrix was generated and subjected to phylogenetic analyses using parsimony. The results of the analyses confirm the outgroup placement of Tribosphenomys relative to Rodentia (in the crown-clade restricted sense of that name). Other results include a sister-group pairing of lagomorphs and rodents (Glires), with various extinct taxa interposed as sequential outgroups to each of these crown clades. The phylogenetic definitions of names attaching to major clades of gliroid mammals are reviewed, with new ones being proposed.

Tribosphenomys basal Glires osteological characters systematics phylogenetic taxonomy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

LITERATURE CITED

  1. Aveianov, A. O. (1991). Tarsals of Glires (Mammalia) from the early Eocene of Kirgizia. Geobios 24: 215–220.Google Scholar
  2. Averianov, A. O. (1994). Early Eocene mimotonids of Kyrgyzstan and the problem of Mixodontia. Acta Palaeont.Pol. 39: 393–411.Google Scholar
  3. Averianov, A. O. (1996). Early Eocene Rodentia of Kyrgyzstan. Bull.Mus.nat.d'Hist.nat., Paris, 18: 629–662.Google Scholar
  4. Averianov, A. O. (1998a). Taxonomic notes on some recently described Eocene Glires (Mammalia). Zoosystem.Rossica 7: 205–208.Google Scholar
  5. Averianov, A. O. (1998b). Homology of the cusps in the molars of the Lagomorpha (Mammalia) and certain general problems of homology in the morphological structures. Paleont.J. 32: 76–81.Google Scholar
  6. Becht, G. (1953). Comparative biologic-anatomical researches on mastication in some mammals. Proc.Kon.Nederl.Akad.Wetensch. 56: 508–527.Google Scholar
  7. Bleefeld, A. R., and McKenna, M. C. (1985). Skeletal integrity of Mimolagus rodens (Lagomorpha, Mammalia). Am.Mus.Novit. 2806: 1–5.Google Scholar
  8. Bohlin, B., (1942). The fossil mammals from the Tertiary deposit of Taben-Buluk, western Kansu: Part I. Insectivora and Lagomorpha. Paleont.Sinica, New Ser.C. 8: 1–113.Google Scholar
  9. Bohlin, B., (1951). Some mammalian remains from Shih-ehr-ma-cheng, Hui-hui-pu area, western Kansu. Sino-Swedish Expeds.Publs. 35: 1–46.Google Scholar
  10. Boon-Kristkoiz, E., and Kristkoiz, A. R. (1999). Order Lagomorpha, In: The Miocene Land Mammals of Europe, G. E. Rossner and K. Heissig, eds., pp. 259–262, Verlag Dr. Friedrich Pfeil, Munchen.Google Scholar
  11. Bown, T. M., and Kraus, M. J. (1979). Origin of the tribosphenic molar and metatherian and eutherian dental formulae. In: Mesozoic Mammals: The First Two-Thirds of Mammalian History, J. A. Lillegraven and W. A. Clemens, eds., pp. 172–181, University California Press, Berkeley.Google Scholar
  12. Bremer, K. (1988). The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evol. 42: 785–803.Google Scholar
  13. Bremer, K. (1994). Branch support and tree stability. Cladistics 10: 295–304.CrossRefGoogle Scholar
  14. Brunner, H., and Coman, B. (1974). The Identification of Mammalian Hair. Inkata Press, Melbourne.Google Scholar
  15. Butler, P. M. (1980). The tupaiid dentition. In: Comparative Biology and Evolutionary Relationships of the Tree Shrews, W. P. Luckett, ed., pp. 171–204, Plenum Press, New York.Google Scholar
  16. Butler, P. M. (1985). Homologies of molar cusps and crests, and their bearing on assessments of rodent phylogeny. In: Evolutionary Relationships among Rodents, W. P. Luckett and J.-L. Hartenberger, eds., pp. 381–401, Plenum Press, New York.Google Scholar
  17. Carpenter, J. M. (1996). Uninformative bootstrapping. Cladistics 12: 177–181.Google Scholar
  18. Corbet, G. B., and Hanks, J. (1968). A revision of the elephant-shrews, family Macroscelididae. Bull.Brit. Mus.Nat.Hist. 16: 4–111.Google Scholar
  19. Crompton, A. W. (1971). The origin of the tribosphenic molar. In: Early Mammals, D. A. Kermack and K. A. Kermack, eds., Zool.J.Linn.Soc.Suppl. 1, 50: 65–87.Google Scholar
  20. Dashzeveg, D. (1990a). The earliest rodents (Rodentia, Ctenodactyloidea) of Central Asia. Acta Zool.Cracov. 33: 11–35.Google Scholar
  21. Dashzeveg, D. (1990b). New trends in adaptive radiation of early Tertiary rodents (Rodentia, Mammalia). Acta Zool.Cracov. 33: 37–44.Google Scholar
  22. Dashzeveg, D., Hartenberger, J.-L., Martin, T., and Legendre, S. (1998). A peculiar minute Glires (Mammalia) from the early Eocene of Mongolia. Bull.Carn.Mus.Nat.Hist. 34: 194–209.Google Scholar
  23. Dashzeveg, D., and Meng, J. (1998). New Eocene ctenodactyloid rodents from the Eastern Gobi Desert of Mongolia and a phylogenetic analysis of ctenodactyloids based on dental features. Am.Mus.Novit. 3246: 1–20.Google Scholar
  24. Dashzeveg, D., and Russell, D. E. (1988). Palaeocene and Eocene Mixodontia (Mammalia, Glires) of Mongolia and China. Palaeont. 31: 129–164.Google Scholar
  25. Dashzeveg, D., Russell, D. E., and Flynn, L. J. (1987). New Glires (Mammalia) from the early Eocene of the People's Republic of Mongolia. 1. Systematics and description. Proc.Koninkl.Akad.Wetensch. B90: 133–142.Google Scholar
  26. Dawson, M. R. (1958). Later Tertiary Leporidae of North America. Univ.Kansas Spec.Publ., Lawrence 2: 287–316.Google Scholar
  27. Dawson, M. R., and Beard, K. C. (1996). New late Paleocene rodents (Mammalia) from Big Multi Quarry, Washakie Basin, Wyoming. Palaeovert. 25: 301–321.Google Scholar
  28. Dawson, M. R., Li, C.-K., and Qi, T. (1984). Eocene ctenodactyloid rodents (Mammalia) of eastern central Asia. Spec.Publ.Carn.Mus.Nat.Hist. 9: 138–150.Google Scholar
  29. Debrot, S., Fivaz, G., Mermod, C., and Weber, J.-M. (1982). Atlas des Poils de Mammif'eres d'Europe. Imprimerie de l'Ouest S. A., Peseux.Google Scholar
  30. De Queiroz, K., and Gauthier, J. (1990). Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Syst.Biol. 39: 307–322.Google Scholar
  31. De Queiroz, K., and Gauthier, J. (1992). Phylogenetic taxonomy. Ann.Rev.Ecol.Syst. 23: 449–480.CrossRefGoogle Scholar
  32. Druzinsky, R. E. (1995). Incisal biting the mountain beaver (Aplodontia rufa) and woodchuck (Marmota monax). J.Morphol. 226: 79–101.PubMedGoogle Scholar
  33. Evans, F. G. (1942). The osteology and relationships of the elephant shrews (Macroscelididae). Bull.Am.Mus. Nat.Hist. 80: 85–125.Google Scholar
  34. Every, R. G. (1975). Significance of tooth sharpness for mammalian, especially primate, evolution. In: Approaches to Primate Paleobiology. F. Szalay, ed., pp. 293–325, Karger Press, Basel.Google Scholar
  35. Every, R. G., and Kuhne, W. G. (1969). Funktion und form der Saugerzahne. I. Thegosis, Usur und Druckusur. Z.Saugetierk. 35: 247–252.Google Scholar
  36. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evol. 39: 783–791.Google Scholar
  37. Flynn, J. J. and Wyss, A. R. (1999). New marsupials from the Eocene-Oligocene transition of the Andean Main Range, Chile. J.Vert.Paleont. 19: 533–549.Google Scholar
  38. Flynn, L. J., Jacobs, L. L., and Cheema, I. U. (1986). Baluchimyinae, a new ctenodactyloid rodent subfamily from the Miocene of Baluchistan. Am.Mus.Novit. 2841: 1–58.Google Scholar
  39. Flynn, L. J., Russell, D. E., and Dashzeveg, D. (1987). New Glires (Mammalia) from the early Eocene of the People's Republic of Mongolia. 2. Incisor morphology and enamel microstructure. Proc.Koninkl.Akad. Wetensch. B90: 143–154.Google Scholar
  40. Gans, C., De Vree, F., and Gorniak, G. C. (1978). Analysis of mammalian masticatory mechanisms: Progress and problems. Zbl.Vet.Med.C.Anat.Histol.Embryol. 7: 226–244.Google Scholar
  41. Gidley, J. W., (1912). The lagomorphs as an independent order. Science, N.S., 36: 285–286.Google Scholar
  42. Gingerich, P. D. (1976). Cranial anatomy and evolution of early Tertiary Plesiadapidae (Mammalia, Primates). Pap.Paleont. 15: 1–140.Google Scholar
  43. Gingerich, P. D., and Martin, R. D. (1981). Cranial morphology and adaptations in Eocene Adapidae—The Cambridge skull of Adapis uparisiensis. Am.J.Phys.Anthrop. 56: 235–257.Google Scholar
  44. Gregory, W. K. (1910). The orders of mammals. Bull.Am.Mus.Nat.Hist. 27: 1–524.Google Scholar
  45. Gregory, W. K. (1920). On the structure and relations of Notharctus, an American Eocene primate. Mem.Am. Mus.Nat.Hist.n.s. 3: 49–243.Google Scholar
  46. Hartenberger, J.-L., (1977). A propos de l'origine des Rongeurs. G´eobios, M´em.Sp´ec. 1: 183–193.Google Scholar
  47. Hartenberger, J.-L., (1980). Donn´ees et hypoth'eses sur la radiation initiale des Rongeurs. Palaeovert.M´em. Jub. R. Lavocat: 285–302.Google Scholar
  48. Hartenberger, J.-L. (1985). The order Rodentia: Major question on their evolutionary origin, relationships and suprafamilial systematics. In: Evolutionary Relationships among Rodents, W. P. Luckett and J.-L. Hartenberger, eds., pp. 1–33, Plenum Press, New York.Google Scholar
  49. Hartenberger, J.-L., Dashzeveg, D., and Martin, T. (1997). What is Ivanantonia efremovi.Pal¨aont.Zeitschrift 71: 135–143.Google Scholar
  50. Hennig, W., (1966). Phylogenetic Systematics. Univ. Illinois Press, Urbana.Google Scholar
  51. Hiiemae, K. (1971). The structure and function of the jaw muscles in the rat (Rattus noruegicus L.). The mechanics of the muscles. Zool.J.Linn.Soc. London 50: 111–132.Google Scholar
  52. Hiiemae, K., and Ardran, G. M. (1968). A cinefluorographic study of mandibular movement during feeding in the rat. J.Zool Lond. 154: 139–154.Google Scholar
  53. Hu, Y. (1993). Two new genera of Anagalidae (Anagalida, Mammalia) from the Paleocene of Qianshan, Anhui and the phylogeny of anagalids. Vert.PalAsiat., 31: 153–182.Google Scholar
  54. Huang, X.-S. (1987). Fossil ochotonids from the middle Oligocene of Ulantatal, Nei Mongol. Vert.PalAsiat. 25: 260–282.Google Scholar
  55. Kallen, F. C., and Gans, C. (1972). Mastication in the little brown bat, Myotis lucifugus.J.Morphol. 136: 385–420.Google Scholar
  56. Kielan-Jaworowska, Z., (1969). Preliminary data on the Upper Cretaceous eutherian mammals from Bayn Dzak, Gobi Desert. Results of the Polish-Mongolian Palaeontological Expeditions, Part I. Palaeont.Polon. 19: 171–191.Google Scholar
  57. Kielan-Jaworowska, Z., (1975). Preliminary description of two new eutherian genera from the Late Cretaceous of Mongolia. Results of the Polish-Mongolian Palaeontological Expeditions, Part VI. Palaeont.Polon. 33: 5–13.Google Scholar
  58. Kielan-Jaworowska, Z., (1977). Evolution of the therian mammals in the Late Cretaceous of Asia. Part II. Postcranial skeleton in Kennalestes and Asioryctes. Palaeont.Polon. 37: 65–83.Google Scholar
  59. Kielan-Jaworowska, Z., (1978). Evolution of the therian mammals in the Late Cretaceous of Asia. Part III. Postcranial skeleton in Zalambdalestidae. Palaeont.Polon. 38: 3–41.Google Scholar
  60. Kielan-Jaworowska, Z. (1981). Evolution of the therian mammals in the Late Cretaceous of Asia. Part VI. Skull structure in Kennalestes and Asioryctes. Results of the Polish-Mongolian Palaeontological Expeditions, Part IX, Palaeont.Polon. 42: 25–71.Google Scholar
  61. Kielan-Jaworowska, Z. (1984a). Evolution of the therian mammals in the Late Cretaceous of Asia. Part V. Skull structure in Zalambdalestidae. Results of the Polish-Mongolian Palaeontological Expeditions, Part X. Palaeont.Polon. 46: 107–117.Google Scholar
  62. Kielan-Jaworowska, Z. (1984b). Evolution of the therian mammals in the Late Cretaceous of Asia. Part VII. Synopsis. Results of the Polish-Mongolian Palaeontological Expeditions, Part X. Palaeont.Polon. 46: 173–183.Google Scholar
  63. Kielan-Jaworowska, Z., Bown, T. M., and Lillegraven, J. A. (1979). Eutheria. In: Mesozoic Mammals, the First Two-thirds of Mammalian History, J. A. Lillegraven, Z. Kielan-Jaworowska, and W. A. Clemens, eds., pp. 221–258. University of California Press, Berkeley.Google Scholar
  64. Kielan-Jaworowska, Z., and Trofimov B. A. (1980). Cranial morphology of the Cretaceous eutherian mammal Barunlestes. Acta Palaeont.Polon. 25: 167–185.Google Scholar
  65. Kluge, A. G., and Wolf, A. J. (1993). Cladistics: What's in a word? Cladistics 9: 183–199.Google Scholar
  66. Koenigswald, W. v. (1985). Evolutionary trends in the enamel of rodent incisors. In: Evolutionary Relationships among Rodents, W. P. Luckett and J.-L. Hartenberger, eds., pp. 404–422, Plenum Press, New York.Google Scholar
  67. Koenigswald, W. v. (1995). Lagomorpha versus Rodentia: the number of layers in incisor enamels. N.Jb.Geol. Palaont.Mh. 10: 605–613.Google Scholar
  68. Koenigswald, W. v. (1996). Die Zahl der Schmelzschichten in den Inzisiven bei den Lagomorpha und ihre systematische Bedeutung. Bonn.Zool.Beitr. 46: 33–57.Google Scholar
  69. Koenigswald, W. v., and Clemens, W. A. (1992). Levels of complexity in the microstructure of mammalian enamel and their application in studies of systematics. Scan.Micr. 6: 195–218.Google Scholar
  70. Koenigswald, W. v., and Pfretzschner, H. U. (1991). Biomechanics in the enamel of mammalian teeth. In: Con-structional Morphology and Biomechanics, N. Schmidt-Kittler and K. Vogel, eds., pp. 113–125. Springer-Verlag, Berlin.Google Scholar
  71. Koenigswald, W. v., Sander, P. M., Leite, M. B., Mors, T., and Santel, W. (1994). Functional symmetries in the schmelzmuster and morphology of rootless rodent molars. Zool.Jour.Linn.Soc. 110: 141–179.Google Scholar
  72. Korth, W. W. (1984). Earliest Tertiary evolution and radiation of rodents in North America. Bull.Carn.Mus. Nat.Hist. 24: 1–71.Google Scholar
  73. Korth, W. W. (1994). The Tertiary Record of Rodents in North America. Plenum Press, New York.Google Scholar
  74. Korvenkontio, V. A. (1934). Mikroskopische Untersuchungen an Nagerincisiven unter Hinweis auf die Schmelzstruktur der Backenzahne. Ann.Zool.Soc.Zool.-Botan.Fennicae Vanamo 2: 1–274.Google Scholar
  75. Landry, S. O., Jr. (1957). The interrelationships of the New and Old World hystricomorph rodents. Univ.Calif. Publ.Zool. 56: 1–118.Google Scholar
  76. Landry S. O., Jr. (1970). The Rodentia as omnivores. Quart.Rev.Biol. 45: 351–372.PubMedGoogle Scholar
  77. Landry, S. O., Jr. (1999). A proposal for a new classification and nomenclature for the Glires (Lagomorpha and Rodentia). Mitt.Mus.Nat.Berlin, Zool.Reihe 75: 283–319.Google Scholar
  78. Li, C.-K. (1977). Paleocene eurymyloids (Anagalida, Mammalia) of Quianshan, Anhui. Vert.PalAsiat. 15: 103–118.Google Scholar
  79. Li, C.-K., and Ting, S.-Y. (1985). Possible phylogenetic relationships of eurymylids and rodents, with comments on mimotonids. In: Evolutionary Relationships among Rodents, W. P. Luckett and J.-L. Hartenberger, eds., pp. 35–58, Plenum Press, New York.Google Scholar
  80. Li, C.-K., and Ting, S.-Y. (1993). New cranial and postcranial evidence for the affinities of the eurymylids (Rodentia) and mimotonids (Lagomorpha). In: Mammal Phylogeny-Placentals, F. S. Szalay, M. J. Novacek and M. C. McKenna, eds., pp. 151–158, Springer-Verlag, New York.Google Scholar
  81. Li, C.-K., Wilson, R. W., Dawson, M. R., and Krishtalka, L. (1987). The origin of rodents and lagomorphs. In: Current Mammalogy Vol. 1, H. H. Genoways, ed., pp. 97–108, Plenum Press, New York.Google Scholar
  82. Li, C.-K., and Yan, D.-F. (1979). The systematic position of eurymylids (Mammalia) and the origin of Rodentia. In: Abstracts of Papers, 12th Annual Conference and 3rd National Congress Paleontological Society of China, pp. 155–156, Beijing.Google Scholar
  83. Li, C.-K., Zheng, J.-J., and Ting, S.-Y. (1989). The skull of Cocomys lingchaensis, an Early Eocene ctenodactyloid rodent of Asia. Science Series.Nat.Hist.Mus.Los Angeles County 33: 179–192.Google Scholar
  84. Linnaeus, C. (1758). Systema naturae per regna tria naturae, secundum classes, ordines, genera, speciescum characteribus, differentiis, synomymis, locis, Editio decima reformata, Vol. 1, Laurentii Salvii, Stockholm.Google Scholar
  85. Lopez Martinez, N. (1985). Reconstruction of ancestral cranioskeletal features in the order Lagomorpha. In: Evolutionary Relationships among Rodents, W. P. Luckett and J.-L. Hartenberger, eds., pp. 151–189, Plenum Press, New York.Google Scholar
  86. Luckett, W. P. (1980). Comparative Biology and Evolutionary Relationships of Tree Shrews. Plenum Press, New York.Google Scholar
  87. Luckett, W. P. (1985). Superordinal and intraordinal affinities of rodents: Developmental evidence from dentition and placentation. In: Evolutionary Relationships among Rodents, W. P. Luckett and J.-L. Hartenberger, eds., pp. 227–276, Plenum Press, New York.Google Scholar
  88. Luckett, W. P. (1993). Ontogenetic staging of the mammalian dentition, and its value for assessment of homology and heterochrony. J.Mammal.Evol. 1: 269–282.Google Scholar
  89. Luckett, W. P., and Hartenberger, J.-L. (1985). Evolutionary relationships among rodents: comments and conclusions. In: Evolutionary Relationships among Rodents, W. P. Luckett and J.-L. Hartenberger, eds., pp. 685–712, Plenum Press, New York.Google Scholar
  90. Luckett, W. P., and Hartenberger, J.-L. (1993). Monophyly or polyphyly of the Order Rodentia: possible conflict between morphological and molecular interpretations. J.Mammal.Evol. 1: 127–147.Google Scholar
  91. MacPhee, R. D. E. (1981). Auditory regions of primates and eutherian insectivores. Morphology, ontogeny, and character analysis. Contrib.Primatol. 18: 1–282.Google Scholar
  92. Maddison, W. P., Donoghue, M. J., and Maddison, D. R. (1984). Outgroup analysis and parsimony. Syst.Zool. 33: 83–103.Google Scholar
  93. Maddison, W. P., and Maddison, D. R. (1992). MacClade-Analysis of Phylogeny and Character Evolution. Sunderland, Massachusetts.Google Scholar
  94. Martin, T. (1992). Schmelzmikrostructur in den Incisiven alt-und neuweltlicher hystricognather Nagetiere. Palaeovert.Mm.Extraord., pp. 1–168.Google Scholar
  95. Martin, T. (1993). Early rodent incisor enamel evolution: phylogenetic implications. J.Mammal.Evol. 1: 227–254.Google Scholar
  96. Martin, T. (1999). Phylogenetic implications of Glires (Eurymylidae, Mimotonidae, Rodentia, Lagomorpha) incisor enamel microstructure. Mitt.Mus.Nat.Berlin, Zool.Reihe 75: 257–273.Google Scholar
  97. Matthew, W. D., and Granger, W. (1925). Fauna and correlation of the Gashato Formation of Mongolia. Am. Mus.Novit. 189: 1–12.Google Scholar
  98. Matthew, W. D., Granger, W., and Simpson, G. G. (1929). Additions to the fauna of the Gashato Formation of Mongolia. Am.Mus.Novit. 376: 1–12.Google Scholar
  99. McKenna, M. C. (1963). New evidence against the tupaiioid affinities of the mammalian family Anagalidae. Am.Mus.Novit. 2158: 1–16.Google Scholar
  100. McKenna, M. C. (1975). Toward a phylogenetic classification of the Mammalia. In: Phylogeny of the Primates, W. P. Luckett and F. S. Szalay, eds., pp. 21–46, Plenum Press, New York.Google Scholar
  101. McKenna, M. C. (1982). Lagomorpha interrelationships. Geobios, mem.spec. 6: 213–224.Google Scholar
  102. McKenna, M. C. (1993). Cranial features of mimotonid lagomorphs. J.Vert.Paleont.Suppl. 13: 50A.Google Scholar
  103. McKenna, M. C. (1994). Early relatives of flopsy, mopsy, and cottontail. Nat.Hist. 103: 56–58.Google Scholar
  104. McKenna, M. C., and Bell, S. K. (1997). Classification of Mammals above the Species Level. Columbia University Press, New York.Google Scholar
  105. McKenna, M. C., Kielan-Jaworowska, Z., and Meng, J. (2000). Earliest eutherian mammal skull from the late Cretaceous (Coniacian) of Uzbekistan. Acta Palaeont.Polon. 44: 1–54.Google Scholar
  106. McKenna, M. C., and Meng, J. (In press). A primitive relative of rodents from the Chinese Paleocene. J.Vert. Paleont.Google Scholar
  107. Meng, J. (1990). The auditory region of Reithroparamys delicatissimus (Mammalia, Rodentia) and its systematic implications. Am.Mus.Novit. 2972: 1–35.Google Scholar
  108. Meng, J., and Wyss, A. R. (1994). The enamel microstructure of Tribosphenomys (Mammalia, Glires): Functional and phylogenetic implications. J.Mammal.Evol. 2: 185–203.Google Scholar
  109. Meng, J., and Wyss, A. R. (1997). Multituberculate and other mammal hair recovered from Palaeogene excreta. Nature 385: 712–714.Google Scholar
  110. Meng, J., Wyss, A. R., Dawson, M. R., and Zhai, R.-J. (1994). Primitive fossil rodent from Inner Mongolia and its implications for mammalian phylogeny. Nature, 370: 134–136.PubMedGoogle Scholar
  111. Meng, J., Zhai, R.-J., and Wyss, A. R. (1998). The late Paleocene Bayan Ulan fauna of Inner Mongolia, China. Bull.Carn.Mus. 34: 148–185.Google Scholar
  112. Moore, W. J. (1981). The Mammalian Skull. Cambridge University Press, Cambridge.Google Scholar
  113. Moss-Salentijn, L. (1978). Vestigial teeth in the rabbit, rat and mouse; their relationship to the problem of lacteal dentitions. In: Development, Function and Evolution of Teeth, P. M. Butler and K. A. Joysey, eds., pp. 13–29, Academic Press, London.Google Scholar
  114. Nessov, L. A. (1987). Rezultaty poiskov i issledovaniya melovykh i rannepaleogenovykh mlekopitayushchikh na territorii SSSR [Results of search and study on the Cretaceous and Early Paleogene mammals on the territory of the USSR]. Ezhyegodnik Vsesoyuznogo Paleont.Obsh., 30: 199–218.Google Scholar
  115. Novacek, M. J. (1977). Aspects of the problem of variation, origin, and evolution of the eutherian auditory bulla. Mammal Rev. 7: 131–149.Google Scholar
  116. Novacek, M. J. (1985). Cranial evidence for rodent affinities. In: Evolutionary Relationships among Rodents, W. P. Luckett and J.-L. Hartenberger, eds., pp. 59–81, Plenum Press, New York.Google Scholar
  117. Novacek, M. J. (1986a). The primitive eutherian dental formula. J.Vert.Paleont. 6: 191–196.Google Scholar
  118. Novacek, M. J. (1986b). The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. Bull.Am.Mus.Nat.Hist. 183: 1–111.Google Scholar
  119. Novacek, M. J., and Wyss, A. R. (1986). Higher-level relationships of the Recent eutherian orders: morphological evidence. Cladistics 2: 257–287.Google Scholar
  120. Novacek, M. J., Rougier, G. W., Wible, J. R., McKenna, M. C., Dashzeveg, D., and Horovitz, I. (1997). Epipubic bones in eutherian mammals from the Late Cretaceous of Mongolia. Nature 389: 483–486.CrossRefPubMedGoogle Scholar
  121. Offermans, M., and De Vree, F. (1990). Mastication in springhare: a cineradiographic study. J.Morphol. 205:353–367.Google Scholar
  122. Ooe, T. (1980). Developpement embryonnaire des incisives chez le lapin (Oryctolagus cuniculus L.). Interpertation de la formule dentaire. Mammalia 44: 259–269.Google Scholar
  123. Patterson, B., and Wood, A. E. (1982). Rodents from the Deseadan Oligocene of Bolivia and the relationships of the Caviomorpha. Bull.Mus.Comp.Zool., Harvard Univ. 149: 371–543.Google Scholar
  124. Pfretzschner, H. U. (1988). Structural reinforcement and crack propagation in enamel. Mem.Mus.Natl.Hist. Nat. Paris C53: 133–143.Google Scholar
  125. Rensberger, J. M. (1995). Determination of stresses in mammalian dental enamel and their relevance to their interpretation of feeding behavior in extinct taxa. In: Functional Morpholgy in Vertebrate Paleontology, J. Thomason, ed., pp. 151–172. Cambridge University Press, Cambridge.Google Scholar
  126. Rose, K. D. (1981). The Clarkforkian Land-Mammal Age and mammalian faunal composition across the Paleocene-Eocene boundary. Univ.Mich.Pap.Paleont. 26: 1–197.Google Scholar
  127. Rougier, G. W., Wible, J. R., and Novacek, M. J. (1998). Implications of Deltatheridium specimens for early marsupial history. Nature 396: 459–463.CrossRefPubMedGoogle Scholar
  128. Russell, D. E. (1964). Les mammif'eres pal´eoc'enes d'Europe. M´em.Mus.Nat.d'Hist.Natur., ser. c, 13: 1–324.Google Scholar
  129. Sanderson, M. J. (1995). Objections to bootstrapping phylogenies: A critique. Syst.Biol. 44: 299–320.Google Scholar
  130. Satoh, K. (1997). Comparative functional morphology of mandibular forward movement during mastication of two murid rodents, Apodemus speciosus (Murinae) and Clethrionomys rufocanus (Arvicolinae). J.Morphol. 231: 131–142.PubMedGoogle Scholar
  131. Satoh, K. (1999).Mechanical advantage of area of origin for the external pterygoid muscle in two murid rodents, Apodemus speciosus and Clethrionomys rufocanus. J.Morphol. 240: 1–14.PubMedGoogle Scholar
  132. Shadle, A. R. (1936). The attrition and extrusive growth of the four major incisor teeth of the domestic rabbit. J.Mammal. 17: 15–21.Google Scholar
  133. Shevyreva, N. S. (1995). The oldest lagomorphs (Lagomorpha, Mammalia) of the Eastern Hemisphere. Dokl. Akad.Nauk, 345: 377–379.Google Scholar
  134. Shevyreva, N. S., and Gabunia, L. (1986). The first discovery of Eurymylidae (Mixodontia, Mammalia) in USSR. J.Palaeont. 4: 77–82.Google Scholar
  135. Shoshani, J., and McKenna, M. C. (1998). Higher taxonomic relationships among extant mammals based on morphology, with selected comparisons of results from molecular data. Mol.Phylog.Evol. 9: 572–584.Google Scholar
  136. Simmons, N. B. (1993). Phylogeny of Multituberculata. In: Mammal Phylogeny-Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials, F. S. Szalay, M. J. Novacek and M. C. McKenna, eds., pp. 146–164, Springer-Verlag, New York.Google Scholar
  137. Simoens, P., Lauwers, H., Verraes, W., and Huysseune, A. (1995). On the homology of the incisor teeth in the rabbit (Oryctolagus cuniculus). Belg.J.Zool. 125: 315–327.Google Scholar
  138. Simpson, G. G. (1928a). Further notes on Mongolian Cretaceous mammals. Am.Mus.Novit. 329: 1–9.Google Scholar
  139. Simpson, G. G. (1928b). Affinities of the Mongolian Cretaceous insectivores. Am.Mus.Novit. 330: 1–11.Google Scholar
  140. Simpson, G. G. (1931). A new insectivore from the Oligocene Ulan Gochu horizon of Mongolia. Am.Mus. Novit. 505: 1–22.Google Scholar
  141. Stehlin, H. G. (1912). Die S¨augetiere des schweizerischen Eoc¨aens. Critischer catalog der materialen. Abh. Schweiz.Pal.Ges. 38: 1165–1298.Google Scholar
  142. Sulimski, A. (1968). Paleocene genus Pseudictops Matthew, Granger and Simpson 1929 (Mammalia) and its revision. Palaeont.Polon. 19: 101–129.Google Scholar
  143. Swofford, D. L. (2000). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  144. Sych, L. (1971). Mixodontia, a new order of mammals from the Paleocene of Mongolia. Pal.Polon. 25: 147–158.Google Scholar
  145. Sych, L., and Sych, B. (1977). Serial tooth homology in ontogeny and evolution of the third lower premolar in lagomorphs. Folia Biol. 25: 382–389.Google Scholar
  146. Szalay, F. S. (1977). Phylogenetic relationships and a classification of the eutherian Mammalia. In: Major Patterns in Vertebrate Evolution, M. K. Hecht, P. C. Goody and B. M. Hecht, eds., pp. 317–374, Plenum Press, New York.Google Scholar
  147. Szalay, F. S. (1985). Rodent and lagomorph morphotype adaptations, origins, and relationships: Some postcranial attributes analyzed. In: Evolutionary Relationships among Rodents, W. P. Luckett and J.-L. Hartenberger, eds., pp. 83–132, Plenum Press, New York.Google Scholar
  148. Szalay, F. S. (1994). Evolutionary History of the Marsupials and an Analysis of Osteological Characters. Cambridge University Press, New York.Google Scholar
  149. Szalay, F. S., and McKenna, M. C. (1971). Beginnings of the age of mammals in Asia: the late Paleocene Gashato fauna, Mongolia. Bull.Am.Mus.Hist. 144: 269–318.Google Scholar
  150. Szalay, F. S., Tattersall, I., and Decker, R. L. (1975). Phylogenetic relationships of Plesiadapis: postcranial evidence. Contrib.Primatol. 5: 136–166.PubMedGoogle Scholar
  151. Taylor, A. C., and Butcher, E. C. (1951). The regulation of eruption rate in the incisor teeth of the white rat. J.Exp.Zool. 117: 165–188.Google Scholar
  152. Thorington, R. W., Jr., and Darrow, K. (1996). Jaw muscles of old world squirrels. J.Morphol. 230: 145–165.Google Scholar
  153. Tobien, H. (1978). Brachydonty and hypsodonty in some Paleogene Eurasian lagomorphs. Mainzer Geowiss. Mitt. 6: 161–175.Google Scholar
  154. Tomes, J. (1850). On the structure of the dental tissues of the order Rodentia. Phil.Tran.Roy.Soc.Lond. 1850:529–567.Google Scholar
  155. Tong, Y.-S. (1989). A new species of Sinolagomys (Lagomorpha, Ochotonidae) from Xinjiang. Vert.PalAsiat. 27: 103–116.Google Scholar
  156. Tong, Y.-S., and Dawson, M. R. (1995). Early Eocene rodents (Mammalia) from Shangdong Province, China. Ann.Carn.Mus.Nat.Hist. 64: 51–63.Google Scholar
  157. Tullberg, T. 1899. Ueber das System der Nagetiere: Eine phylogenetische Studie. Nova Acta Reg.Soc.Sci. Upsala Ser. 3, 18: 1–514.Google Scholar
  158. Wahlert, J. H. (1968). Variability of rodent incisor enamel as viewed in thin section, and the microstructure of the enamel in fossil and Recent rodent groups. Brev.Mus.Comp.Zool. 309: 1–18.Google Scholar
  159. Wahlert, J. H. (1974). The cranial foramina of protrogomorphous rodents, an anatomical and phylogenetic study. Bull.Mus.Comp.Zool. 146: 363–410.Google Scholar
  160. Wahlert, J. H. (1989). The three types of incisor enamel in rodents. Nat.Hist.Mus.Los Angeles Co.Sci.Ser. 33: 7–16.Google Scholar
  161. Wilkins, K. T., (1988). Prediction of direction of chewing from cranial and dental characters in Thomonys pocket gophers. J.Mammal. 69: 46–56.Google Scholar
  162. Wilkins, K. T., Cunningham, L. L. (1993). Relationship of cranial and dental features to direction of mastication in tuco-tucos (Rodentia: Ctenomys). J.Mammal. 74: 383–390.Google Scholar
  163. Wilkins, K. T., Woods, C. A. (1983). Modes of mastication in pocket gophers. J.Mammal. 64: 636–641.Google Scholar
  164. Wilson, R. W. (1989). Rodent origins. Nat.Hist.Mus.Los Angeles Co.Sci.Ser. 33: 3–6.Google Scholar
  165. Wood, A. E. (1942). Notes on the Paleocene lagomorph, Eurymylus.Am.Mus.Novit. 1162: 1–7.Google Scholar
  166. Wood, A. E. (1962). The early Tertiary rodents of the family Paramyidae. Trans.Am.Phil.Soc.N.S., 52: 1–261.Google Scholar
  167. Wood, A. E. (1965). Grades and clades among rodents. Evolution 19: 115—130.Google Scholar
  168. Woods, C. A., and Howland, E. B. (1979). Adaptive radiation of capromyid rodents: anatomy of the masticatory apparatus. J.Mammal. 60: 95–116.Google Scholar
  169. Wyss, A. R., and Meng, J. (1996). Application of phylogenetic taxonomy to poorly resolved crown clades: a stem-modified node-based definition of Rodentia. Syst.Biol. 45: 559–568.Google Scholar
  170. Zhai, R.-j. (1978). More fossil evidence favouring an Early Eocene connection between Asia and Neoarctic. Mem.Inst.Vert.Pal.Paleoanthrop. 13: 107–115.Google Scholar
  171. Zhai, R.-j., Bi, Z.-g., and Yu, Z.-j. (1976). Stratigraphy of Eocene Zhanshanji Formation with note on a new species of eurymylid mammal. Vert.PalAsiat., 14: 100–103.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  1. 1.Division of PaleontologyAmerican Museum of Natural HistoryNew York
  2. 2.Department of Geological SciencesUniversity of CaliforniaSanta Barbara

Personalised recommendations