Journal of Mathematical Sciences

, Volume 105, Issue 2, pp 1843–1847

Hilbert's Fifth Problem: Review

  • Sören Illman
Article
  • 49 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. Aczél, “The state of the second part of Hilbert's fifth problem, ” Bull. Amer. Math. Soc., 20, 153–163 (1989).Google Scholar
  2. 2.
    R. H. Bing, “A homeomorphism between the 3-sphere and the sum of two solid horned spheres, ” Ann. Math., 56, 354–362 (1952).Google Scholar
  3. 3.
    G. Birkho., “Lie groups simply isomorphic with no linear group, ” Bull. Amer. Math. Soc., 42, 883–888 (1936).Google Scholar
  4. 4.
    G. Birkho., “Analytical groups, ” Trans. Amer. Math. Soc., 43, 61–101 (1938).Google Scholar
  5. 5.
    G. Bredon, Introduction to Compact Transformation Groups, Academic Press (1972).Google Scholar
  6. 6.
    J. Cerf, “Topologie de certains espaces de plongements, ” Bull. Soc. Math. France, 89, 227–380 (1961).Google Scholar
  7. 7.
    C. Chevalley, Theory of Lie Groups. I, Princeton Univ. Press (1946).Google Scholar
  8. 8.
    A. Gleason, “Groups without small subgroups, ” Ann. Math., 56, 193–212 (1952).Google Scholar
  9. 9.
    S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press (1962).Google Scholar
  10. 10.
    D. Hilbert, “Mathematische Probleme, ” Nachr. Akad. Wiss., Göttingen 253–297 (1900).Google Scholar
  11. 11.
    H. W. Hirsch, Differential Topology, Springer-Verlag (1976).Google Scholar
  12. 12.
    S. Illman, “Every proper smooth action of a Lie group is equivalent to a real analytic action: a contribution to Hilbert's fifth problem, ” Ann. Math. Stud., 138, 189–220 (1995).Google Scholar
  13. 13.
    S. Illman, “Some remarks concerning the very-strong Whitney topology on the set C∞K(M,N) of Kequivariant C∞ maps” (in press).Google Scholar
  14. 14.
    M. A. Kervaire, “A manifold which does not admit any differentiable structure, ” Comment. Math. Helv., 34, 257–270 (1960).Google Scholar
  15. 15.
    W. Koch and D. Puppe, “Differenzierbare Strukturen auf Mannigfaltigkeiten ohne abzä5hlbare Basis, ” Arch. Math., 19, 95–102 (1968).Google Scholar
  16. 16.
    S. Lie, Theorie der Transformationsgruppen, Band III, unter Mitwirkung von F. Engel, Leipzig (1893). 1846Google Scholar
  17. 17.
    J. Mather, “Stability of C∞mappings: II. Infinitesimal stability implies stability, ” Ann. Math., 89, 254–291 (1969).Google Scholar
  18. 18.
    T. Matumoto and M. Shiota, “Unique triangulation of the orbit space of a differentiable transformation group and its applications, ” In: Homotopy Theory and Related Topics, Adv. Stud. Pure Math., Vol. 9, Kinokuniya, Tokyo (1987), pp. 41–55.Google Scholar
  19. 19.
    D. Montgomery, “Properties of finite-dimensional groups, ” Proc. Int. Congr. Math. (Cambridge, U.S.A.), Vol. II (1950), pp. 442–446.Google Scholar
  20. 20.
    D. Montgomery, “Topological transformation groups, ” Proc. Int. Congr. Math. (Amsterdam), Vol. III (1954), pp. 185–188.Google Scholar
  21. 21.
    D. Montgomery and L. Zippin, “Small subgroups of finite-dimensional groups, ” Ann. Math., 56, 213–241 (1952).Google Scholar
  22. 22.
    D. Montgomery and L. Zippin, “Examples of transformation groups, ” Proc. Amer. Math. Soc., 5, 460–465 (1954).Google Scholar
  23. 23.
    D. Montgomery and L. Zippin, Topological Transformation Groups, Interscience Publishers, New York-London (1955).Google Scholar
  24. 24.
    J. von Neumann, “Die Einführung analytischer Parameter in topologischen Gruppen, ” Ann. Math., 34, 170–190 (1933).Google Scholar
  25. 25.
    S. Packman, E-mail letter to the author, August 4, 1998.Google Scholar
  26. 26.
    R. S. Palais, “On the existence of slices for actions of non-compact Lie groups, ” Ann. Math., 73, 295–323 (1961).Google Scholar
  27. 27.
    R. S. Palais, “C1 actions of compact Lie groups on compact manifolds are C1-equivalent to C∞ actions, ” Amer. J. Math., 92, 748–760 (1970).Google Scholar
  28. 28.
    A. du Plessis and T. Wall, The Geometry of Topological Stability, Oxford University Press (1995).Google Scholar
  29. 29.
    L. Pontryagin, Topological Groups, Princeton Univ. Press (1939).Google Scholar
  30. 30.
    W. Schmid, “Poincaré and Lie groups, ” Bull. Amer. Math. Soc., 6, 175–186 (1982).Google Scholar
  31. 31.
    F. Schur, “Über den analytischen Charakter der eine endliche continuirliche Transformationsgruppe darstellenden Functionen, ” Math. Ann., 41, 509–538 (1893).Google Scholar
  32. 32.
    H. Whitney, “Analytic extensions of differentiable functions defined in closed sets, ” Trans. Amer. Math. Soc., 36, 63–89 (1934).Google Scholar
  33. 33.
    H. Whitney, “Differentiable manifolds, ” Ann. Math., 37, 645–680 (1936).Google Scholar
  34. 34.
    C. T. Yang, “Hilbert's fifth problem and related problems on transformation groups, ” In: “Mathematical developments arising from Hilbert problems, ” Proc. Symp. Pure Math., 28,Pt. 1, 142–146 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Sören Illman

There are no affiliations available

Personalised recommendations