Integrin Laminin Receptors and Breast Carcinoma Progression

  • Arthur M. Mercurio
  • Robin E. Bachelder
  • Jun Chung
  • Kathleen L. O'Connor
  • Isaac Rabinovitz
  • Leslie M. Shaw
  • Taneli Tani


This review explores the mechanistic basis of breast carcinoma progression by focusing on the contribution of integrins. Integrins are essential for progression not only for their ability to mediate physical interactions with extracellular matrices but also for their ability to regulate signaling pathways that control actin dynamics and cell movement, as well as for growth and survival. Our comments center on the α6 integrins (α6β1 and α6β4), which are receptors for the laminin family of basement membrane components. Numerous studies have implicated these integrins in breast cancer progression and have provided a rationale for studying the mechanistic basis of their contribution to aggressive disease. Recent work by our group and others on mechanisms of breast carcinoma invasion and survival that are influenced by the α6 integrins are discussed.

Integrin laminin breast carcinoma invasion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. R. Fearon (1999). Cancer progression. Curr. Biol. 9:R873-875.PubMedGoogle Scholar
  2. 2.
    D. Hanahan and R. A. Weinberg (2000). The hallmarks of cancer. Cell 100:57-70.CrossRefPubMedGoogle Scholar
  3. 3.
    E. Rodriguez-Boulan and W. J. Nelson (1989). Morphogenesis of the polarized epithelial cell phenotype. Science 245:718-725.Google Scholar
  4. 4.
    H. Colognato and P. Yurchenco (2000). Form and function: The laminin family of heterotrimers. Developmental Dynamics 218:213-234.PubMedGoogle Scholar
  5. 5.
    N. Boudreau and M. J. Bissell (1998). Extracellular matrix signaling: Integration of form and function in normal and malignant cells. Curr. Opin. Cell. Biol. 10:640-646.PubMedGoogle Scholar
  6. 6.
    M. J. Bissell, V. M. Weaver, S. A. Lelievre, F. Wang, O. W. Petersen, and K. L. Schmeichel (1999). Tissue structure, nuclear organization, and gene expression in normal and malignant breast. Cancer Res. 59:1757-1763s.PubMedGoogle Scholar
  7. 7.
    R. S. Cotran, V. Kumar, and T. Collins (1999). Robbins Pathological Basis of Disease. Saunders, Philadelphia.Google Scholar
  8. 8.
    T. Tani, A. Lumme, A. Linnala, E. Kivilaakso, T. Kiviluoto, R. E. Burgeson, L. Kangas, I. Leivo, and I. Virtanen (1997). Pancreatic carcinomas deposit laminin-5, preferably adhere to laminin-5, and migrate on the newly deposited basement membrane. Am. J. Pathol. 151:1289-1302.PubMedGoogle Scholar
  9. 9.
    H. Mizushima, H., Y. Miyagi, Y. Kikkawa, N. Yamanaka, H. Yasumitsu, K. Misugi, and K. Miyazaki (1996). Differential expression of laminin-5/ladsin subunits in human tissues and cancer cell lines and their induction by tumor promoter and growth factors. J. Biochem. (Tokyo). 120:1196-1202.PubMedGoogle Scholar
  10. 10.
    L. M. Shaw, I. Rabinovitz, H. H. Wang, A. Toker, and A. M. Mercurio (1997). Activation of phosphoinositide 3-OH kinase by the α6β4 integrin promotes carcinoma invasion. Cell 91:949-960.PubMedGoogle Scholar
  11. 11.
    R. E. Bachelder, M. J. Ribick, A. Marchetti, R. Falcioni, S. Soddu, K. R. Davis, and A. M. Mercurio (1999). p53 inhibits α6β4 integrin survival signaling by promoting the caspase 3-dependent cleavage of AKt/PKB. J. Cell. Biol. 147:1063-1072.PubMedGoogle Scholar
  12. 12.
    G. E. Plopper, S. Z. Domanico, V. Cirulli, W. B. Kiosses, and V. Quaranta (1998). Migration of breast epithelial cells on Laminin-5: Differential role of integrins in normal and transformed cell types. Breast Cancer Res. Treat. 51:57-69.PubMedGoogle Scholar
  13. 13.
    N. Koshikawa, G. Giannelli, V. Cirulli, K. Miyazaki, and V. Quaranta (2000). Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J. Cell. Biol. 148:615-624.PubMedGoogle Scholar
  14. 14.
    A. Mercurio (1995). Receptors for the laminins. Achieving specificity through cooperation. Trends in Cell biology 5:419-423.PubMedGoogle Scholar
  15. 15.
    L. M. Shaw (1999). Integrin function in breast carcinoma progression. J. Mammary Gland. Biol. Neoplasia 4:367-376.PubMedGoogle Scholar
  16. 16.
    K. Friedrichs, P. Ruiz, F. Franke, I. Gille, H. J. Terpe, and B. A. Imhof (1995). High expression level of α6 integrin in human breast carcinoma is correlated with reduced survival. Cancer Res. 55:901-906.PubMedGoogle Scholar
  17. 17.
    E. Tagliabue, C. Ghirelli, P. Squicciarini, P. Aiello, M. I. Colnaghi, and S. Menard (1998). Prognostic value of α6β4 integrin expression in breast carcinomas is affected by laminin production from tumor cells. Clin. Cancer Res. 4:407-410.PubMedGoogle Scholar
  18. 18.
    U. M. Wewer, L. M. Shaw, R. Albrechtsen, and A. M. Mercurio (1997). The integrin α6β1 promotes the survival of metastatic human breast carcinoma cells in mice. Am. J. Pathol. 151:1191-1198.PubMedGoogle Scholar
  19. 19.
    R. Mukhopadhyay, R. L. Theriault, and J. E. Price (1999). Increased levels of α6 integrins are associated with the metastatic phenotype of human breast cancer cells. Clin. Exp. Metastasis 17:325-332.PubMedGoogle Scholar
  20. 20.
    W. G. Stetler-Stevenson, S. Aznavoorian, and L. A. Liotta (1993). Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu. Rev. Cell. Biol. 9:541-573.PubMedGoogle Scholar
  21. 21.
    E. D. Hay (1995). Anoverview of epithelio-mesenchymal transformation. Acta. Anat. (Basel) 154:8-20.Google Scholar
  22. 22.
    J. P. Thiery and D. Chopin (1999). Epithelial cell plasticity in development and tumor progression. Cancer Metastasis Rev. 18:31-42.PubMedGoogle Scholar
  23. 23.
    C. Birchmeier, W. Birchmeier, and B. Brand-Saberi (1996). Epithelial-mesenchymal transitions in cancer progression. Acta Anat. (Basel) 156:217-226.Google Scholar
  24. 24.
    B. P. Wijnhoven, W. N. Dinjens, and M. Pignatelli (2000). E-cadherin-catenin cell-cell adhesion complex and human cancer. Br. J. Surg. 87:992-1005.PubMedGoogle Scholar
  25. 25.
    J. Behrens (1999). Cadherins and catenins: Role in signal transduction and tumor progression. Cancer Metastasis Rev. 18:15-30.PubMedGoogle Scholar
  26. 26.
    W. Birchmeier, J. Hulsken, and J. Behrens (1995). E-cadherin as an invasion suppressor. Ciba Found Symp. 189:124-136.PubMedGoogle Scholar
  27. 27.
    W. Birchmeier (1995). E-cadherin as a tumor (invasion) suppressor gene. Bioessays 17:97-99.PubMedGoogle Scholar
  28. 28.
    M. G. Nievers, R. Q. Schaapveld, and A. Sonnenberg (1999). Biology and function of hemidesmosomes. Matrix Biol. 18:5-17.PubMedGoogle Scholar
  29. 29.
    L. M. Bergstraesser, G. Srinivasan, J. C. Jones, S. Stahl, and S. A. Weitzman (1995). Expression of hemidesmosomes and component proteins is lost by invasive breast cancer cells. Am. J. Pathol. 147:1823-1839.PubMedGoogle Scholar
  30. 30.
    I. Rabinovitz and A. M. Mercurio (1996). The integrin α6β4 and the biology of carcinoma. Biochem. Cell. Biol. 74:811-821.PubMedGoogle Scholar
  31. 31.
    C. Chao, M. M. Lotz, A. C. Clarke, and A. M. Mercurio (1996). A function for the integrin α6β4 in the invasive properties of colorectal carcinoma cells. Cancer Res. 56:4811-4819.PubMedGoogle Scholar
  32. 32.
    H. Sun, S. A. Santoro, and M. M. Zutter (1998). Downstream events in mammary gland morphogenesis mediated by reexpression of the α2β1 integrin: The role of the α6 and β4 integrin subunits. Cancer Res. 58:2224-2233.PubMedGoogle Scholar
  33. 33.
    K. L. O'Connor, L. M. Shaw, and A. M. Mercurio (1998). Release of cAMP gating by the α6β4 integrin stimulates lamellae formation and the chemotactic migration of invasive carcinoma cells. J. Cell. Biol. 143:1749-1760.PubMedGoogle Scholar
  34. 34.
    L. Bonaccorsi, V. Carloni, M. Muratori, A. Salvadori, A. Giannini, M. Carini, M. Serio, G. Forti, and E. Baldi (2000). Androgen receptor expression in prostate carcinoma cells suppresses α6β4 integrin-mediated invasive phenotype. Endocrinology 141:3172-3182.PubMedGoogle Scholar
  35. 35.
    D. A. Lauffenburger and A. F. Horwitz (1996). Cell migration: A physically integrated molecular process. Cell 84:359-369.PubMedGoogle Scholar
  36. 36.
    I. Rabinovitz and A. M. Mercurio (1997). The integrin α6β4 functions in carcinoma cell migration on laminin-1 by mediating the formation and stabilization of actin-containing motility structures. J. Cell. Biol. 139:1873-1884.PubMedGoogle Scholar
  37. 37.
    F. Mainiero, A. Pepe, M. Yeon, Y. Ren, and F. G. Giancotti (1996). The intracellular functions of alpha6beta4 integrin are regulated by EGF. J. Cell. Biol. 134:241-253.PubMedGoogle Scholar
  38. 38.
    I. Rabinovitz, A. Toker, and A. M. Mercurio (1999). Protein kinase C-dependent mobilization of the α6β4 integrin from hemidesmosomes and its association with actin-rich cell protrusions drive the chemotactic migration of carcinoma cells. J. Cell. Biol. 146:1147-1160.PubMedGoogle Scholar
  39. 39.
    A. E. Aplin, A. K. Howe, and R. Juliano (1999). Cell adhesion molecules, signal transduction and cell growth. Curr. Opin. Cell. Biol. 11:737-744.PubMedGoogle Scholar
  40. 40.
    P. J. Keely, J. K. Westwick, I. P. Whitehead, C. J. Der, and L. V. Parise (1997). Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature 390:632-636.Google Scholar
  41. 41.
    A. Toker and L. C. Cantley (1997). Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387:673-676.PubMedGoogle Scholar
  42. 42.
    S. Menard, E. Tagliabue, M. Campiglio, and S. M. Pupa (2000). Role of HER2 gene overexpression in breast carcinoma. J. Cell. Physiol. 182:150-162.PubMedGoogle Scholar
  43. 43.
    R. Falcioni, A. Antonini, P. Nistico, S. Di Stefano, M. Crescenzi, P. G. Natali, and A. Sacchi (1997). α6β4 and α6β1 integrins associate with ErbB-2 in human carcinoma cell lines. Exp. Cell. Res. 236:76-85.PubMedGoogle Scholar
  44. 44.
    D. Gambaletta, A. Marchetti, L. Benedetti, A. M. Mercurio, A. Sacchi, and R. Falcioni (2000). Cooperative signaling between α6β4 integrin and ErbB-2 receptor is required to promote phosphatidylinositol 3-kinase-dependent invasion. J. Biol. Chem. 275:10604-10610.PubMedGoogle Scholar
  45. 45.
    G. G. Borisy and T. M. Svitkina (2000). Actin machinery: Pushing the envelope. Curr. Opin. Cell. Biol. 12:104-112.PubMedGoogle Scholar
  46. 46.
    S. M. Schoenwaelder and K. Burridge (1999). Bidirectional signaling between the cytoskeleton and integrins. Curr. Opin. Cell. Biol. 11:274-286.PubMedGoogle Scholar
  47. 47.
    L Mahadevan and P. Matsudaira (2000). Motility powered by supramolecular springs and ratchets. Science 288:95-100.PubMedGoogle Scholar
  48. 48.
    E. E. Sander, S. van Delft, J. P. ten Klooster, T. Reid, R. A. van der Kammen, F. Michiels, and J. G. Collard (1998). Matrixdependent Tiam1/Rac signaling in epithelial cells promotes either cell-cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J. Cell. Biol. 143:1385-1398.PubMedGoogle Scholar
  49. 49.
    D. H. van Weering, J. de Rooij, B. Marte, J. Downward, J. L. Bos, and B. M. Burgering (1998). Protein kinase B activation and lamellipodium formation are independent phosphoinositide 3-kinase-mediated events differentially regulated by endogenous Ras. Mol. Cell. Biol. 18:1802-1811.PubMedGoogle Scholar
  50. 50.
    R. Meili, C. Ellsworth, S. Lee, T. B. Reddy, H. Ma, and R. A. Firtel (1999). Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J. 18:2092-2105.PubMedGoogle Scholar
  51. 51.
    K. L. O'Connor, B. K. Nguyen, and A. M. Mercurio (2000). RhoA function in lamellae formation and migration is regulated by the α6β4 integrin and cAMP metabolism. J. Cell. Biol. 148:253-258.PubMedGoogle Scholar
  52. 52.
    C. Laudanna, J. J. Campbell, and E. C. Butcher (1997). Elevation of intracellular cAMP inhibits RhoA activation and integrin-dependent leukocyte adhesion induced by chemoattractants. J. Biol. Chem. 272:24141-24144.PubMedGoogle Scholar
  53. 53.
    K. Itoh, K. Yoshioka, H. Akedo, M. Uehata, T. Ishizaki, and S. Narumiya (1999). An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nat. Med. 5:221-225.PubMedGoogle Scholar
  54. 54.
    K. Yoshioka, F. Matsumura, H. Akedo, and K. Itoh (1998). Small GTP-binding protein Rho stimulates the actomyosin system, leading to invasion of tumor cells. J. Biol. Chem. 273:5146-5154.PubMedGoogle Scholar
  55. 55.
    S. M. Frisch and H. Francis (1994). Disruption of epithelial cellmatrix interactions induces apoptosis. J. Cell. Biol. 124:619-626.PubMedGoogle Scholar
  56. 56.
    N. Farrelly, Y. J. Lee, J. Oliver, C. Dive, and C. H. Streuli (1999). Extracellular matrix regulates apoptosis in mammary epithelium through a control on insulin signaling. J. Cell. Biol. 144:1337-1348.PubMedGoogle Scholar
  57. 57.
    M. A. Schwartz (1997). Integrins, oncogenes, and anchorage independence. J. Cell. Biol. 139:575-578.PubMedGoogle Scholar
  58. 58.
    C. Hagios, A. Lochter, and M. J. Bissell (1998). Tissue architecture: The ultimate regulator of epithelial function? Philos. Trans. R. Soc. Lond. B. Biol. Sci. 353:857-870.PubMedGoogle Scholar
  59. 59.
    J. M. Brown (1999). The hypoxic cell: A target for selective cancer therapy—eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res. 59:5863-5870.PubMedGoogle Scholar
  60. 60.
    D. Hanahan and J. Folkman (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353-364.CrossRefPubMedGoogle Scholar
  61. 61.
    B. R. Zetter (1998). Angiogenesis and tumor metastasis. Annu. Rev. Med. 49:407-424.PubMedGoogle Scholar
  62. 62.
    S. R. Datta, A. Brunet, and M. E. Greenberg (1999). Cellular survival: A play in three Akts. Genes Dev. 13:2905-2927.PubMedGoogle Scholar
  63. 63.
    J. M. Shields, K. Pruitt, A. McFall, A. Shaub, and C. J. Der (2000). Understanding Ras: 'it ain't over 'til it's over'. Trends Cell. Biol. 10:147-154.PubMedGoogle Scholar
  64. 64.
    L. C. Cantley and B. G. Neel (1999). New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl. Acad. Sci. U.S.A. 96:4240-4245.PubMedGoogle Scholar
  65. 65.
    A. Toker and A. C. Newton (2000). Akt/Protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site. J. Biol. Chem. 275:8271-8274.PubMedGoogle Scholar
  66. 66.
    A. Khwaja, P. Rodriguez-Viciana, S. Wennstrom, P. H. Warne, and J. Downward (1997). Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J. 16:2783-2793.PubMedGoogle Scholar
  67. 67.
    V. Stambolic, A. Suzuki, J. L. de la Pompa, G. M. Brothers, C. Mirtsos, T. Sasaki, J. Ruland, J. M. Penninger, D. P. Siderovski, and T. W. Mak (1998). Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95:29-39.PubMedGoogle Scholar
  68. 68.
    J. Downward (1998). Ras signalling and apoptosis. Curr. Opin. Genet. Dev. 8:49-54.PubMedGoogle Scholar
  69. 69.
    A. Bellacosa, D. de Feo, A. K. Godwin, D. W. Bell, J. Q. Cheng, D. A. Altomare, M. Wan, L. Dubeau, G. Scambia, V. Masciullo, et al. (1995). Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int. J. Cancer 64:280-285.PubMedGoogle Scholar
  70. 70.
    Z. Q. Yuan, M. Sun, R. I. Feldman, G. Wang, X. Ma, C. Jiang, D. Coppola, S. V. Nicosia, and J. Q. Cheng (2000). Frequent activation of AKT2 and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase/Akt pathway in human ovarian cancer. Oncogene 19:2324-2330.PubMedGoogle Scholar
  71. 71.
    K. Jiang, D. Coppola, N. C. Crespo, S. V. Nicosia, A. D. Hamilton, S. M. Sebti, and J. Q. Cheng (2000). The phosphoinositide 3-OH kinase/AKT2 pathway as a critical target for farnesyltransferase inhibitor-induced apoptosis. Mol. Cell. Biol. 20:139-148.PubMedGoogle Scholar
  72. 72.
    K. Nakatani, D. A. Thompson, A. Barthel, H. Sakaue, W. Liu, R. J. Weigel, and R. A. Roth (1999). Up-regulation of Akt3 in estrogen receptor-deficient breast cancers and androgenindependent prostate cancer lines. J. Biol. Chem. 274:21528-21532.PubMedGoogle Scholar
  73. 73.
    L. M. Shaw, C. Chao, U. M. Wewer, and A. M. Mercurio (1996). Function of the integrin α6β1 in metastatic breast carcinoma cells assessed by expression of a dominant-negative receptor. Cancer Res. 56:959-963.PubMedGoogle Scholar
  74. 74.
    A. Toker (2000). Protein kinases as mediators of phosphoinositide 3-kinase signaling. Mol. Pharmacol. 57:652-658.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Arthur M. Mercurio
    • 1
    • 2
  • Robin E. Bachelder
    • 1
    • 2
  • Jun Chung
    • 1
    • 2
  • Kathleen L. O'Connor
    • 1
    • 2
  • Isaac Rabinovitz
    • 1
    • 2
  • Leslie M. Shaw
    • 1
    • 2
  • Taneli Tani
    • 1
    • 2
  1. 1.Division of Cancer Biology and Angiogenesis, Department of PathologyBeth Israel Deaconess Medical CenterBoston
  2. 2.Harvard Medical SchoolBoston

Personalised recommendations