Advertisement

It Takes a Tissue to Make a Tumor: Epigenetics, Cancer and the Microenvironment

  • Mary Helen Barcellos-Hoff
Article

Abstract

How do normal tissues limit the development of cancer? This review discusses the evidence that normal cells effectively restrict malignant behavior, and that such tissue forces must be subjugated to establish a tumor. The action of ionizing radiation will be specifically discussed regarding the disruption of the microenvironment that promotes the transition from preneoplastic to neoplastic growth. Unlike the highly unpredictable nature of genetic mutations, the response of normal cells to radiation damage follows an epigenetic program similar to wound healing and other damage responses. Our hypothesis is that the persistent disruption of the microenvironment in irradiated tissue compromises its ability to suppress carcinogenesis.

Carcinogenesis epigenetics mammary ionizing radiation stroma tissue 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. J. Bissell and M. H. Barcellos-Hoff (1987). The influence of extracellular matrix on gene expression: Is structure the message? J. Cell Sci. 8:327–343.Google Scholar
  2. 2.
    G. B. Pierce, R. Shikes, and L. M. Fink (1978). Cancer: A Problem of Developmental Biology. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.Google Scholar
  3. 3.
    C. Grobstein (1967). Mechanism of organogenetic tissue interaction. Natl. Cancer Inst. Monogr. 26:279–299.Google Scholar
  4. 4.
    K. Kratochwil (1969). Organ specificity in mesenchymal induction demonstrated in the embryonic development of the mammary gland of the mouse. Dev. Biol. 20:46–71.Google Scholar
  5. 5.
    E. Fuchs and J. A. Segre (2000). Stem cells:Anew lease on life. Cell 100:143–155.Google Scholar
  6. 6.
    G. Evan and T. Littlewood (1998). A matter of life and cell death. Science 281:1317–1322.Google Scholar
  7. 7.
    E. Farber (1984). The multistep nature of cancer development. Cancer Res. 44:4217–4223.Google Scholar
  8. 8.
    R. A. Weinberg (1989). Oncogenes, antioncogenes, and the molecular bases of multistep carcinogenesis. Cancer Res. 49:3713–3721.Google Scholar
  9. 9.
    S. H. Kim, K. A. Roth, A. R. Moser, and J. I. Gordon (1993). Transgenic mouse models that explore the multistep hypothesis of intestinal neoplasia. J. Cell Biol. 123:877–893.Google Scholar
  10. 10.
    A. van den Hoof (1988). Stromal involvement in malignant growth. Adv. Cancer Res. 50:159–196.Google Scholar
  11. 11.
    M. Skobe and N. E. Fusenig (1998). Tumorigenic conversion of immortal human keratinocytes through stromal cell activation. Proc. Natl. Acad. Sci. U.S.A. 95:1050–1055.Google Scholar
  12. 12.
    K. W. Kinzler and B. Vogelstein (1997). Cancer-susceptibility genes. Gatekeepers and caretakers [news; comment]. Nature 386:761, 763.Google Scholar
  13. 13.
    K.W. Kinzler and B. Vogelstein (1998). Landscaping the cancer terrain [comment]. Science 280:1036–1037.Google Scholar
  14. 14.
    D. Hanahan and R. A. Weinberg (2000). The hallmarks of cancer. Cell 100:57–50.Google Scholar
  15. 15.
    M. Terzaghi and P. Nettesheim (1979). Dynamics of neoplastic development in carcinogen-exposed tracheal mucosa. Cancer Res. 39:3004–3010.Google Scholar
  16. 16.
    R. L. Ullrich (1986). The rate of progression of radiationtransformed mammary epithelial cells is enhanced after lowdose-rate neutron irradiation. Rad. Res. 105:68–75.Google Scholar
  17. 17.
    K. Kamiya, J. Yasukawa-Barnes, J. M. Mitchen, M. N. Gould, and K. H. Clifton (1995). Evidence that carcinogenesis involves an imbalance between epigenetic high-frequency initiation and suppression of promotion. Proc. Natl. Acad. Sci.U.S.A. 92:1332–1336.Google Scholar
  18. 18.
    G. Bauer (1996). Elimination of transformed cells by normal cells: A novel concept for the control of carcinogenesis. Histol. Histopathol. 11:237–255.Google Scholar
  19. 19.
    I. Engelmann and G. Bauer (2000). How can tumor cells escape intercellular induction of apoptosis? Anticancer Res. 20:2297–2306.Google Scholar
  20. 20.
    I. Engelmann, H. Eichholtz-Wirth, and G. Bauer (2000). Ex vivo tumor cell lines are resistant to intercellular induction of apoptosis and independent of exogenous survival factors. Anticancer Res. 20:2361–2370.Google Scholar
  21. 21.
    M. Terzaghi-Howe (1986). Inhibition of carcinogen-altered rat tracheal epithelial cell proliferation by normal epithelial cells in vivo. Carcinogenesis 8:145–150.Google Scholar
  22. 22.
    G.-W. Chang and M. Terzaghi-Howe (1998). Multiple changes in gene expression are associated with normal cell-induced modulation of the neoplastic phenotype. Cancer Res. 58:4445–4452.Google Scholar
  23. 23.
    M. M. Zutter, S. A. Santoro, W. D. Staatz, and Y. L. Tsung (1995). Re-expression of the ?2? 1 integrin abrogates malignant phenotype of breast carcinoma cells. Proc. Natl. Acad. Sci. U.S.A. 92:7411–7415.Google Scholar
  24. 24.
    V. M. Weaver, O. W. Petersen, F. Wang, C. A. Larabell, P. Briand, C. Damsky, and M. J. Bissell (1997). Reversion of the malignant phenotype of human breast cells in threedimensional culture and in vivo by integrin blocking antibodies. J.Cell Biol. 137:231–245.Google Scholar
  25. 25.
    R. Bhatia, J. B. McCarthy, and C. M. Verfaillie (1996). Interferon-? restores normal ?1 integrin-mediated inhibition of hematopoietic progenitor proliferation by the marrow microenvironment in chronic myelogenous leukemia. Blood 87:3883–3891.Google Scholar
  26. 26.
    J. B. Little (2000). Radiation carcinogenesis. Carcinogenesis 21:397–404.Google Scholar
  27. 27.
    C. L. Limoli, M. I. Kaplan, J. Corcoran, M. Meyers, D. A. Boothman, and W. F. Morgan (1997). Chromosomal instability and its relationship to other end points of genomic instability. Cancer Res. 57:5557–5563.Google Scholar
  28. 28.
    E. I. Azzam, S. M. de Toledo, T. Gooding, and J.B. Little (1998). Intercellular communication is involved in the bystander regulation of gene expression in human cells exposed to very low fluences of ? particles. Rad. Res. 150:497–504.Google Scholar
  29. 29.
    B. E. Lehnert and E. H. Goodwin(1997). Extracellular factor(s) following exposure to ? particles can cause sister chromatid exchanges in normal human cells. Cancer Res. 57:2164–2171.Google Scholar
  30. 30.
    M. Chow and H. Rubin (1999). The cellular ecology of progressive neoplastic transformation: A clonal analysis. Proc. Natl. Acad. Sci. U.S.A. 96:2093–2098.Google Scholar
  31. 31.
    J. E. Trosko, C. C. Chang, and B. V. Madhukar (1990). Modulation of intercellular communication during radiation and chemical carcinogenesis. 123:241–251.Google Scholar
  32. 32.
    I. Tomlinson and W. Bodmer (1999). Selection, the mutation rate and cancer: Ensuring that the tail does not wag the dog. Nature Med. 5:11–12.Google Scholar
  33. 33.
    I. P. Tomlinson, M. R. Novelli, and W. F. Bodmer (1996). The mutation rate and cancer. Proc. Natl. Acad. Sci. U.S.A. 93:14800–14803.Google Scholar
  34. 34.
    J. J. Decosse, C. L. Gossens, J. F. Kuzma, and D. Unsworth (1973). Breast cancer: Induction of differentiation by embryonic tissue. Science 181:1057–1058.Google Scholar
  35. 35.
    M. Cooper and H. Pinkus (1977). Intrauterine transplantation of rat basal cell carcinoma as a model for reconversion of malignant to benign growth. Cancer Res. 37:2544–2552.Google Scholar
  36. 36.
    S. L. Schor, A. M. Schor, A. Howell, and J. Haggie (1988). The possible role of abnormal fibroblasts in the phathogenesis of breast cancer. In M. A. Rich, J. C. Hager, and D. M. Lopez, (eds.), Breast Cancer: Scientific and Chemical Progress, Kluwer Academic Publishers, Boston, pp. 142–157.Google Scholar
  37. 37.
    S. L. Schor, A. M. Schor, A. Howell, and D. Crowther (1987). Hypothesis: Persistent expression of fetal phenotypic characteristics by fibroblasts is associated with an increased susceptibility to neoplastic disease. Expl. Cell Biol. 55:11–17.Google Scholar
  38. 38.
    S. L. Schor, A. M. Schor, P. Durning, and G. Rushton (1985). Skin fibroblasts obtained from cancer patients display foetallike migratory behavior on collagen gels. J. Cell Sci. 73:235–244.Google Scholar
  39. 39.
    A. M. Schor, G. Rushton, J. E. Ferguson, A. Howell, J. Redford, and S. L. Schor (1994). Phenotypic heteogeneity in breast fibroblasts: Functional anomaly in fibroblasts from histologically normal tissue adjacent to carcinoma. Int. J. Cancer 59:25–32.Google Scholar
  40. 40.
    J. A. Haggie, S. L. Schor, A. Howell, J. M. Birch, and R. A. S. Sellwood (1987). Fibroblasts from relatives of hereditary breast cancer patients display fetal-like behavior in vitro. Lancet 1:1455–1457.Google Scholar
  41. 41.
    D. Medina, F. Shepherd, and T. Gropp (1978). Enhancement of the tumorigenicity of preneoplastic mammary nodule lines by enzymatic dissociation. JNCI 60:1121–1126.Google Scholar
  42. 42.
    T. Sakakura, Y. Sakagami, and Y. Nishizuka (1979). Persistence of responsiveness of adult mouse mammary gland to induction by embryonic mesenchyme. Dev. Biol. 72:201–210.Google Scholar
  43. 43.
    T. Sakakura, Y. Sakagami, and Y. Nishizuka (1981). Accelerated mammary cancer development by fetal salivary mesenchyme isografted to adult mouse mammary epithelium. J. Natl. Cancer Inst. 66:953–959.Google Scholar
  44. 44.
    M. Y. Gordon, C. R. Dowding, G. P. Riley, J. M. Goldman, and M. F. Greaves (1987). Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukaemia. Nature 328:342–344.Google Scholar
  45. 45.
    M. H. Sieweke and M. J. Bissell (1994). The tumor promoting effect of wounding: A possible role for TGF? induced fibrotic stroma. Crit. Rev. Oncogenesis 5:297–311.Google Scholar
  46. 46.
    B. Fisher and E. R. Fisher (1968). Role of host and tumor calcium in metastases. Cancer Res. 28:1753–1758.Google Scholar
  47. 47.
    D. S. Dolberg, R. Holingworth, M. Hertle, and M. J. Bissell (1985). Wounding and its role in RSV-mediated tumor formation. Science 230:676–678.Google Scholar
  48. 48.
    A. C. Schuh, S. F. Keating, F. S. Moneclaro, P. K. Vogt, and M. L. Breitman (1990). Obligatory wounding requirement for tumorigenesis in v-jun transgenic mice. Nature 346:756–760.Google Scholar
  49. 49.
    A. Lochter, S. Galosy, J. Muschler, N. Freedman, Z. Werb, and M. J. Bissell (1997). Matrix metalloproteinase stomelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and premalignant phentoype in mammary epithelial cells. J. Cell Biol. 139:1861–1872.Google Scholar
  50. 50.
    N. Thomasset, A. Lochter, C. J. Sympson, L. R. Lund, D. R. Williams, O. Behrendtsen, Z. Werb, and M. J. Bissell (1998). Expression of autoactivated stromelysin-1 in mammary glands of transgenic mice leads to a reactive stroma during early development. J. Amer. Sci. 153:457–467.Google Scholar
  51. 51.
    J. E. Trosko (1998). Hierarchcal and cybernetic nature of biologic systems and their relevance to homeostatic adaptation to low-level exposures to oxidative stress-inducing agents. Environ. Health Perspect. 106:331–339.Google Scholar
  52. 52.
    M. H. Barcellos-Hoff (1993). Radiation-induced transforming growth factor ? and subsequent extracellular matrix reorganization in murine mammary gland. Cancer Res. 53:3880–3886.Google Scholar
  53. 53.
    M. H. Barcellos-Hoff, R. Derynck, M. L.-S. Tsang, and J. A. Weatherbee (1994). Transforming growth factor-? activation in irradiated murine mammary gland. J. Clin. Invest. 93:892–899.Google Scholar
  54. 54.
    E. J. Ehrhart, A. Carroll, P. Segarini, M. L.-S. Tsang, and M. H. Barcellos-Hoff (1997). Latent transforming growth factor-? activation in situ: Quantitative and functional evidence following low dose irradiation. FASEB J. 11:991–1002.Google Scholar
  55. 55.
    M. H. Barcellos-Hoff (1998). How do tissues respond to damage at the cellular level? The role of cytokines in irradiated tissues. Rad. Res. 150:S109–S120.Google Scholar
  56. 56.
    M. H. Barcellos-Hoff (1998). The potential influence of radiation-induced microenvironments in neoplastic progression. J. Mam. Gland Biol. Neoplasia 3:165–175.Google Scholar
  57. 57.
    M. H. Barcellos-Hoff and S. A. Ravani (2000). Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 60:1254–1260.Google Scholar
  58. 58.
    J. Greenberger, M. Epperly, A. Zeevi, K. Brunson, K. Goltry, K. Pogue-Geile, J. Bray, and L. Berry (1996). Stromal cell involvement in leukemogenesis and carcinogenesis. InVivo 10:1–17.Google Scholar
  59. 59.
    J. T. Leith and S. Michelson (1990). Tumor radiocurability: Relationship to intrinsic tumor eterogeneity and to the tumor bed effect. Invasion Metastasis 10:329–351.Google Scholar
  60. 60.
    L. T. Bemis and P. Schedin (2000). Reproductive state of rat mammary gland stroma modulates human breast cancer cell migration and invasion. Cancer Res. 60:3414–3418.Google Scholar
  61. 61.
    G. M. Hodges, R.M. Hicks, and G.D. Spacey (1977). Epithelialstromal interactions in normal and chemical carcinogen-treated adult bladder. Cancer Res. 37:3720–3730.Google Scholar
  62. 62.
    R. S. Cha, W. G. Thilly, and H. Zarbl (1994). N-nitroso-Nmethylurea-induced rat mammary tumors arise from cells with preexisting oncogenic Hras1 gene mutations. PNAS 91:3749–3753.Google Scholar
  63. 63.
    A. Haimovitz-Friedman, I. Vlodavsky, A. Chaudhuri, L. Witte, and Z. Fuks (1991). Autocrine effects of fibroblast growth factor in repair of radiation damage in endothelial cells. Cancer Res. 51:2552–2558.Google Scholar
  64. 64.
    D. M. Gadbois and B. E. Lehnert (1997). Control of radiationinduced G1 arrest by cell-substratum interactions. Cancer Res. 57:1151–1156.Google Scholar
  65. 65.
    S. Kondo (1988). Altruistic cell suicide in relation to radiation hormesis. Int. J. Radiat. Biol. Phys. Chem. Med. 53:95–102.Google Scholar
  66. 66.
    C. Nathan and M. Sporn (1991). Cytokines in context. J.Cell Biol. 113:981–986.Google Scholar
  67. 67.
    A.B. Roberts, N.L. Thompson, U. Heine, C. Flanders, and M.B. Sporn (1988). Transforming growth factor-?: Possible roles in carcinogenesis. Brit. J. Cancer 57:594–600.Google Scholar
  68. 68.
    J. Massague, S.W. Blain, and R. S. Lo (2000). TGF-? signaling in growth control, cancer, and heritable disorders. Cell 103:295–309.Google Scholar
  69. 69.
    M. W. J. Ferguson (1994). Skin wound healing: Transforming growth factor ? antagonists decrease scarring and improve quality. J. Interferon Res. 14:303–304.Google Scholar
  70. 70.
    G. S. Ashcroft, X. Yang, A. B. Glick, M. Weinstein, J. L. Letterio, D. E. Mizel, M. Anzano, T. Greenwell-Wild, S. M. Wahl, C. Deng, and A. B. Roberts (1999). Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nature Cell Biol. 1:260–266.Google Scholar
  71. 71.
    T. Ohmori, J. L. Yang, J. O. Price, and C. L. Arteaga (1998). Blockade of tumor cell transforming growth factor-?s enhances cell cycle progression and sensitizes human breast carcinoma cells to cytotoxic chemotherapy. Exp. Cell Res. 245:350–359.Google Scholar
  72. 72.
    B. A. Teicher, Y. Maehara, Y. Kakeji, G. Ara, S. R. Keyes, J. Wong, and R. Herbst (1997). Reversal of in vivo drug resistance by the transforming growth factor-? inhibitor decorin. Int. J. Cancer 71:49–58.Google Scholar
  73. 73.
    T. Häufel, S. Dormann, J. Hanusch, A. Schwieger, and G. Bauer (1999). Three distinct roles for TGF-? during intercellular induction of apoptosis: A review. Anticancer Res. 19: 105–111.Google Scholar
  74. 74.
    M. H. Sieweke, N. L. Thompson, M. B. Sporn, and M. J. Bissell (1990). Mediation of wound-related Rous sarcoma virus tumorigenesis and TGF-?. Science 248:1656–1660.Google Scholar
  75. 75.
    G. Furstenberger, M. Rogers, R. Schnapki, G. Bauer, P. Hofler, and F. Marks (1989). Stimulatory role of transforming growth factors in multistage skin carcinogenesis: Possible explanation for the tumor-inducing effect of wounding in initiated NMRI mouse skin. Int. J. Cancer 43:915–921.Google Scholar
  76. 76.
    T. M. Fynan and M. Reiss (1993). Resistance to inhibition of cell growth by transforming growth factor-? and its role in oncogenesis. Crit. Rev. Oncogen. 4:493–540.Google Scholar
  77. 77.
    D. F. Pierce, A. E. Gorska, A. Chythil, K. S. Meise, D. L. Page, R. J. Coffey, Jr., and H. L. Moses (1995). Mammary tumor suppression by transforming growth factor ?1 transgene expression. Proc. Natl. Acad. Sci. U.S.A. 92:4254–4258.Google Scholar
  78. 78.
    W. Cui, D. J. Fowlis, S. Bryson, E. Duffie, H. Ireland, A. Balmain, and R. J. Akhurst (1996). TGF?1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86:531–542.Google Scholar
  79. 79.
    G. Portella, S. A. Cumming, J. Liddell, W. Cui, H. Ireland, R. J. Akhurst, and A. Balmain (1998). Transforming growth factor ? is essential for spindle cell conversion of mouse skin carcinoma in vivo: Implications for tumor invasion. Cell Growth Differ. 9:393–404.Google Scholar
  80. 80.
    C. Amendt, P. Schirmacher, H. Weber, and M. Blessing (1998). Expression of a dominant negative type II TGF-? receptor in mouse skin results in an increase in carcinoma incidence and an acceleration of carcinoma development. Oncogene 17:25–34.Google Scholar
  81. 81.
    E. D. Hay(1995). An overview of epithelio-mesenchymal transformation. Acta Anat (Basel) 1:8–20.Google Scholar
  82. 82.
    B. Tang, E. P. Bottinger, S. B. Jakowlew, K. M. Bangall, J. Mariano, M. R. Anver, J. J. Letterio, and L. M. Wakefield (1998). Transforming growth factor-?1 is a new form of tumor supressor with true haploid insufficiency. Nature Medicine 4:802–807.Google Scholar
  83. 83.
    M. Hojo, T. Morimoto, M. Maluccio, T. Asano, K. Morimoto, M. Lagman, T. Shimbo, and M. Suthanthiran (1999). Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature 397:530–534.Google Scholar
  84. 84.
    A. B. Glick, W.C. Weinberg, I. H. Wu, W. Quan, and S. H. Yuspa (1996). Transforming growth factor ?1 suppresses genomic instability independent of a G1 arrest, p53, and Rb. Cancer Res. 56:3645–3650.Google Scholar
  85. 85.
    A. Glick, N. Popescu, V. Alexander, H. Ueno, E. Bottinger, and S. H. Yuspa (1999). Defects in transforming growth factor-? signaling cooperate with a Ras oncogene to cause rapid aneuploidy and malignant transformation of mouse keratinocytes. Proc. Nat. Acad. of Sci. U.S.A. 96:14949–14954.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Mary Helen Barcellos-Hoff
    • 1
  1. 1.Life Sciences Division, Bldg. 74-174Lawrence Berkeley National LaboratoryBerkeley

Personalised recommendations