Journal of Mathematical Sciences

, Volume 106, Issue 3, pp 2952–2974

Absolute Continuity of the Spectra of Two-Dimensional Periodic Magnetic Schrodinger Operator and Dirac Operator with Potentials in the Zygmund Class

  • I. S. Lapin
Article

Abstract

The absolute continuity of the spectra of two-dimensional Schrodinger operators and Dirac operators with magnetic and electric potentials is established. Bibliography: 20 titles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Thomas, “Time dependent approach to scattering from impurities in a crystal, ” Comm. Math. Phys., 33 (1973), 335-343.Google Scholar
  2. 2.
    M. Reed andB. Simon, Methods of Modern Mathematical Physics. IV: Analysis of Operators. New York-San Francisco-London: Academic Press (1978).Google Scholar
  3. 3.
    M. Sh. Birman andT. A. Suslina, “Two-dimensional periodicmagnetic Hamiltonian is absolutely continuous, ” Algebra i Analiz, 9, No. 1 (1997), 32-48. English translation: St. Petersbg. Math. J., 9, No. 1 (1998), 21-32.Google Scholar
  4. 4.
    M. Sh. Birman andT. A. Suslina, “Absolute continuity of two-dimensional periodic magnetic Hamiltonian with discontinuous vector potential, ” Algebra i Analiz, 10, No. 4 (1998), 1-36.Google Scholar
  5. 5.
    M. Sh. Birman andT. A. Suslina, “periodic magnetic Hamiltonian with variable metric. The problem of absolute continuity, ” Algebra i Analiz, 11, No. 2 (1999), 1-40. English translation: St.Petersbg.Math. J., 11, No. 2 (2000), 203-232.Google Scholar
  6. 6.
    A. V. Sobolev, “Absolute continuity of the periodic magnetic Schr¨odinger operator, ” Invent. Math. 137(1) (1999), 85-112.Google Scholar
  7. 7.
    Z. Shen, Absolute continuity of periodic Schr¨odinger operators with potentials in the Kato class, Preprint mp arc 00-294 (2000), http://www.ma.utexas.edu/mp arc.Google Scholar
  8. 8.
    M. Sh. Birman,T. A. Suslina, andR. G. Shterenberg, “Absolute continuity of two-dimensional Schrödinger operator with delta-potential concentrated at a period family of curves, ” Algebra i Analiz, 12, No. 6 (2000).Google Scholar
  9. 9.
    R. G. Shterenberg, “Absolute continuity of two-dimensional magnetic periodic Schrödinger operator with electric potential of type of derivative with respect to measure, ” Zap. Nauchn. Semin. POMI, 271, 276-312 (2000).Google Scholar
  10. 10.
    L. I. Danilov, “Spectrum of the Dirac operator in Rn with periodic potential, ” Teor. Mat. Fiz., 85, no. 1 (1990), 41-53. English translation: Theor. Math. Phys., 85, no. 1, 1039-1048 (1990).Google Scholar
  11. 11.
    L. I. Danilov, “Estimates for resolvent and the spectrum of the Dirac operator with periodic potential, ” Teor. Mat. Fiz., 103 No. 1 (1995), 3-22.Google Scholar
  12. 12.
    L. I. Danilov, “Spectrum of the periodic Dirac operator, ” Teor. Mat. Fiz., 118, No. 1 (1999), 3-14.Google Scholar
  13. 13.
    L. I. Danilov, Absolute continuity of the spectra of the periodic Schr¨odinger operator and the Dirac operator. I, Dep. VINITI, No. 1683-B00, Moscow (2000).Google Scholar
  14. 14.
    M. Sh. Birman,T. A. Suslina, “The periodic Dirac operator is absolutely continuous, ” Integr. Eq. Oper. Theory, 34 (1999), 377-395.Google Scholar
  15. 15.
    T. Suslina, “Absolute continuity of the spectrumof periodic operators of mathematical physics, ” J. Eq.Deriv. Part., 5-9 (2000).Google Scholar
  16. 16.
    T. Weidl, “Another look at Cwikel's inequality, ” Amer. Math. Soc. Transl. Ser. 2, 189 (1999), 247-254.Google Scholar
  17. 17.
    D. E. Edmunds,P. Gurka, andB. Opic, “On embeddings of logarithmic Bessel potential spaces, ” J. Funct. Anal., 146 (1997), 116-150.Google Scholar
  18. 18.
    M. Solomyak, “Spectral problem related to the critical exponent in the Sobolev embedding theorem, ” Proc. London Math. Soc., 71 (1995), 53-75.Google Scholar
  19. 19.
    J. Marcinkiewicz, “Sur les multiplicateurs des séries de Fourier, ” Studia Math., 8 (1939), 78-91.Google Scholar
  20. 20.
    T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin-Heidelberg-New York (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • I. S. Lapin

There are no affiliations available

Personalised recommendations