Self-Propagating Reactions in the Ti–Si System: A SHS-MASHS Comparative Study

  • U. Anselmi-Tamburini
  • F. Maglia
  • G. Spinolo
  • S. Doppiu
  • M. Monagheddu
  • G. Cocco


In this work, we report on the self-propagating reaction in Ti–Si blends, observed by SHS and MASHS (mechanical activated SHS) techniques. In spite of the differences between the two reacting methods, correlations were found between the key parameters of the two modes of activation. Moreover, this comparative study enabled us to gain some hints on the reaction mechanism. The combustive behavior of powder mixtures with stoichiometries corresponding to the intermetallics present in the Ti–Si phase diagram (TiSi2, TiSi, Ti5Si4, and Ti5Si3) was studied. The SHS characteristics, such as combustion temperature, propagation rate, and ignition temperature was strongly dependent on both the initial stoichiometry and milling time. Particular attention was paid to the influence of the initial stoichiometry and milling conditions on the reaction mechanism. A single-step dissolution-precipitation mechanism was found for the composition Ti : Si = 5 : 3. On the other hand, at the composition Ti : Si = 1 : 2, the mechanism shows two steps, the first, active at the leading front of the combustion front, involving only solid phases, and the second, active in the afterburn region, involving solid–liquid interaction.

Mechanically activated SHS Ti–Si mechanochemistry mechanical alloying silicides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Veltl, B. Sholtz, and H. D. Kunze, in New Materials by Mechanical Alloying Techniques, E. Arzt and L. Shultz, eds. (DGM Informationsgesellschaft, Oberursel, 1989), p. 79.Google Scholar
  2. 2.
    J. H. Ahn, H. S. Chung, R. Watanabe, and Y. H. Park, Mater. Sci. Forum 88–90, 347 (1992).Google Scholar
  3. 3.
    T. Yamasaky, Y. Ogino, K. Morishita, K. Fukuoka, T. Atou, and Y. Syono, Mater. Sci. Eng. A179–A180, 220 (1994).Google Scholar
  4. 4.
    Z. H. Yan, M. Oehring, and R. Bormann, J. Appl. Phys. 72, 2483 (1992).Google Scholar
  5. 5.
    M. Oehring, Z. H. Yan, T. Klassen, and R. Bormann, Phys. Stat. Sol. 131, 671 (1992).Google Scholar
  6. 6.
    Y. H. Park and H. Hashimoto, Mater. Sci. Eng. A181–A182, 1212 (1994).Google Scholar
  7. 7.
    A. P. Radinskly and A. Calka, Mater. Sci. Eng. A134, 1376 (1991).Google Scholar
  8. 8.
    B. K. Yen, J. Appl. Phys. 81, 7061 (1997).Google Scholar
  9. 9.
    B. K. Yen and T. Aizawa, J. Amer. Ceram. Soc. 81, 1953 (1998).Google Scholar
  10. 10.
    A. S. Rogachev, V. A. Shugaev, I. O. Khomenko, A. Varma, and C. R. Kachelmyer, Combust. Sci. Technol. 109, 53 (1995).Google Scholar
  11. 11.
    J. Trambukis and Z. A. Munir, J. Amer. Ceram. Soc. 73, 1240 (1990).Google Scholar
  12. 12.
    L. L. Wang and Z. A. Munir, Metall. Mater. Trans. 26B, 595 (1995).Google Scholar
  13. 13.
    CHR. G. Tschakarov, G. G. Gospodinov, and Z. Bontschev, J. Solid State Chem. 41, 244 (1982).Google Scholar
  14. 14.
    G. B. Shaffer and P. G. McCormick, Scripta Metall. 23, 835 (1989).Google Scholar
  15. 15.
    M. Atzmon, Phys. Rev. Lett. 64, 487 (1990).Google Scholar
  16. 16.
    A. A. Popovich, V. P. Reva, V. N. Vasilenko, and O. A. Belous, Mater. Sci. Forum 88–90, 737 (1992).Google Scholar
  17. 17.
    E. Ma, J. Pagan, G. Cranford, and M. Atzmon, J. Mater. Res. 8, 1836 (1993).Google Scholar
  18. 18.
    L. Takacs, J. Solid State Chem. 125, 75 (1996).Google Scholar
  19. 19.
    L. Takacs, Mater. Sci. Forum 269–272, 513 (1998).Google Scholar
  20. 20.
    A. G. Merzhanov, Intern. J. SHS 4, 323 (1995).Google Scholar
  21. 21.
    F. Delogu, M. Monagheddu, G. Mulas, L. Schiffini, and G. Cocco, Intern. J. Nonequilibr. Process. 11, 235 (1998).Google Scholar
  22. 22.
    F. Delogu, L. Schiffini, and G. Cocco, Phil. Mag A, in press.Google Scholar
  23. 23.
    N. Bertolino, U. Anselmi-Tamburini, F. Maglia, G. Spinolo, and Z. A. Munir, J. Alloys Comp. 288, 238 (1999).Google Scholar
  24. 24.
    F. Maglia, U. Anselmi-Tamburini, N. Bertolino, C. Milanese, and Z. A. Munir, J. Mater. Res. 15, 1098 (2000).Google Scholar
  25. 25.
    S. Doppiu, M. Monagheddu, G. Cocco, F. Maglia, N. Bertolino, U. Anselmi-Tamburini, and Z. A. Munir, J. Mater. Res., 16, 1266 (2001).Google Scholar
  26. 26.
    G. B. Shaffer and P. G. McCormick, Mater. Sci. Forum 88–90, 779 (1992).Google Scholar
  27. 27.
    F. Maglia, U. Anselmi-Tamburini, G. Cocco, M. Monagheddu, N. Bertolino, and Z. A. Munir, J. Mater. Res., 16, 534 (2001).Google Scholar
  28. 28.
    B. I. Khaikin and A. G. Merzhanov, Comb. Explosion Shock Waves 2, 22 (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • U. Anselmi-Tamburini
    • 1
  • F. Maglia
    • 2
  • G. Spinolo
    • 2
  • S. Doppiu
    • 3
  • M. Monagheddu
    • 3
  • G. Cocco
    • 3
  1. 1.Department of Physical Chemistry and C.S.T.E./CNRUniversity of PaviaPaviaItaly
  2. 2.Department of Physical Chemistry and C.S.T.E./CNRUniversity of PaviaPaviaItaly
  3. 3.Department of ChemistrySassariItaly

Personalised recommendations