European Journal of Plant Pathology

, Volume 107, Issue 2, pp 237–248 | Cite as

Identification of Pathogenic Races 0, 1B/C, 5, And 6 Of Fusarium Oxysporum F. Sp. Ciceris With Random Amplified Polymorphic DNA (RAPD)

  • María del Mar Jiménez-Gasco
  • Encarnación Pérez-Artés
  • Rafael M. Jiménez-Diaz


Ninety-nine isolates of Fusarium oxysporum f. sp. ciceris (Foc), representative of the two pathotypes (yellowing and wilt) and the eight races described (races 0, 1A, 1B/C, 2, 3, 4, 5, and 6), were used in this study. Sixty isolates were analyzed by the RAPD technique using DNA bulks for each race and 40 primers. Bands presumably specific for a DNA bulk were identified and this specificity was confirmed by further RAPD analysis of individual isolates in each DNA bulk. Primers OPI-09, OPI-18, OPF-06, OPF-10, and OPF-12 generated RAPD marker bands for races 0, 1B/C, 2, 3, 4, 5, and 6. The reliability and utility of this procedure was validated in ‘blind trials’ using 39 new Foc isolates. Ten of the 39 isolates had already been typed to race by pathogenicity tests and 29 were typed both by pathogenicity and RAPD testing in this study. In these ‘blind trials’, we assigned the 39 new isolates to a race solely on the basis of their RAPD haplotype. Thus, we concluded that Foc races 0, 1B/C, 5, and 6 can be characterized by the RAPD markers. Cluster analysis of the RAPD data set resulted in three clusters of isolates within Foc. The yellowing isolates were grouped in two distinct clusters which correspond to races 0 and 1B/C. The wilt isolates constitute a third cluster that included races 1A, 2, 3, 4, 5, and 6. These results provide a means of studying the distribution of Foc races, to assist in the early detection of introduced race(s) and to facilitate the efficient deployment of available host resistance.

chickpea Cicer arietinum Fusarium wilt pathotypes molecular markers diagnostics genetic diversity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Assigbetse KB, Fernandez D, Dubois MP and Geiger JP (1994) Differentiation of Fusarium oxysporum f. sp. vasinfectum races on cotton by Random Amplified Polymorphic DNA (RAPD) analysis. Phytopathology 84: 622-626Google Scholar
  2. Bentley S, Pegg KG and Dale JL (1994) Optimization of RAPD-fingerprinting to analyze genetic variation within populations of Fusarium oxysporum f. sp. cubense. Journal of Phytopathology 142: 64-78Google Scholar
  3. BouhotDand Rouxel F (1971) Technique sélective et quantitative d'analyse des Fusarium oxysporum et Fusarium solani dans le sol. Mode d'emploi. Annals de Phytopathologie 3: 251-254Google Scholar
  4. Brown JKM (1998) Surveys of variation in pathogen populations and their application to disease control. In: Jones DG (ed) The Epidemiology of Plant Diseases (pp 73-102) Kluwer Publishers, DordrechtGoogle Scholar
  5. Cabrera de la Colina J (1986) Variación patogénica en Fusarium oxysporum Schlecht. emend. Snyder & Hansen y Fusarium solani (Mart.) Sacc. emend. Snyder & Hansen, agentes de la Marchitez y Podredumbre de Raíz del garbanzo en Andalucía. Ph. D. Thesis Universidad de Córdoba, Córdoba, SpainGoogle Scholar
  6. Correll JC (1991) The relationship between formae specialis, races and vegetative compatibility groups in Fusarium oxysporum. Phytopathology 81: 1061-1063Google Scholar
  7. Excoffier L, Smouse PE and Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131: 479-491Google Scholar
  8. García-Pedrajas MD, Bainbridge BW, Heale JB, Pérez-Artés E and Jiménez-Díaz RM(1999) A simple PCR-based method for the detection of the chickpea wilt pathogen Fusarium oxysporum f. sp. ciceris in artificial and natural soils. European Journal of Plant Pathology 105: 251-259Google Scholar
  9. Grajal-Martín MJ, Simon CJ and Muehlbauer FJ (1993) Use or Random Amplified PolymorphicDNA(RAPD) to characterize race 2 of Fusarium oxysporum f. sp. pisi. Phytopathology 83: 612-614Google Scholar
  10. Halila MH and Strange RN (1996) Identification of the causal agent of wilt of chickpea in Tunisia as Fusarium oxysporum f. sp. ciceri race 0. Phytopathologia Mediterranea 35: 67-74Google Scholar
  11. Haware MP and Nene YL (1980) Influence of wilt at different stages on the yield loss in chickpea. Tropical Grain Legume Bulletin 19: 38-40Google Scholar
  12. Haware MP and Nene YL (1982) Races of Fusarium oxysporum f. sp. ciceris. Plant Disease 66: 809-810Google Scholar
  13. Hoagland DR and Arnon DI (1950) The water culture method for growing plants without soil. California Experimental Station Circular No. 347Google Scholar
  14. Jalali BL and Chand H (1992) Chickpea wilt. In: Singh US, Mukhopadhayay AN, Kumar J and Chaube HS (eds) Plant Diseases of International Importance. Vol I. Diseases of Cereals and Pulses (pp 429-444) Prentice Hall, Englewood Cliffs, NYGoogle Scholar
  15. Jiménez-Díaz RM, Alcalá-Jiménez AR, Hervás A and Trapero-Casas JL (1993) Pathogenic variability and hosts resistance in the Fusarium oxysporum f. sp. ciceris/Cicer arietinum pathosystem. In: Proc. Eur. Semin. Fusarium Mycotoxins, Taxonomy, Pathogenicity and Host Resistance, 3rd (pp 87-94) Hodowsla Ròslin Aklimatyazacja i Nasiennictwo. Plant Breeding and Acclimatization Institute, Radzikóv, PolandGoogle Scholar
  16. Kelly AG (1996) Genome analysis of races and pathotypes in the fungus Fusarium oxysporum f. sp. ciceris infecting chickpea. Ph.D. Thesis King's College London, University of London, LondonGoogle Scholar
  17. Kelly AG, Alcalá-Jiménez AR, Bainbridge BW, Heale JB, Pérez-Artés E and Jiménez-Díaz RM (1994) Use of genetic fingerprinting and Random Amplified Polymorphic DNA to characterize pathotypes of Fusarium oxysporum f. sp. ciceris infecting chickpea. Phytopathology 84: 1293-1298Google Scholar
  18. Kelly AG, Bainbridge BW, Heale JB, Pérez-Artés E and Jiménez-Díaz RM (1998) In planta-polymerase-chain-reaction detection of the wilt-inducing pathotype of Fusarium oxysporum f. sp. ciceris in chickpea (Cicer arietinum L.). Physiological and Molecular Plant Pathology 52: 397-409Google Scholar
  19. Leslie JF (1993) Fungal vegetative compatibility. Annual Review of Phytopathology 31:127-151Google Scholar
  20. Manulis S, Kogan N, Reuven M and Ben Yephet Y (1994) Use of RAPD technique for identification of Fusarium oxysporum f. sp. dianthi from carnation. Phytopathology 84: 98-101Google Scholar
  21. McDonald BA (1997) The populations genetics of fungi: tools and techniques. Phytopathology 87: 448-453Google Scholar
  22. Migheli Q, Briatore E and Garibaldi A (1998) Use of random amplified polymorphic DNA (RAPD) to identify races 1, 2, 3 and 8 of Fusarium oxysporum f. sp. dianthi in Italy. European Journal of Plant Pathology 104: 49-57Google Scholar
  23. Milgroom MG and Fry WE (1997) Contributions of population genetics to plant disease epidemiology and management. Advances in Botanical Research 24: 2-30Google Scholar
  24. Miller SA (1996) Detecting propagules of plant pathogenic fungi. Advances in Botanical Research 23: 73-102Google Scholar
  25. Nogales-Moncada AM (1997) Compatibilidad vegetativa en Fusarium oxysporum f. sp. ciceris y Fusarium oxysporum f. sp. melonis agentes, respectivamente, de las Fusariosis vasculares del garbanzo y melón. Ph.D. Thesis Universidad de Córdoba, Córdoba, SpainGoogle Scholar
  26. Pérez-Artés E, González-Roncero MI and Jiménez-Díaz RM (1995) Restriction fragment length polymorphism analysis of the mitochondrial DNA of Fusarium oxysporum f. sp. ciceris. Journal of Phytopathology 143: 105-109Google Scholar
  27. Pérez-Artés E, Rodríguez-Jurado D and Jiménez-Díaz RM (1996) Caracterización de aislados de Fusarium oxysporum no patogénicos de garbanzo mediante análisis de polimorfismos de AND. In: Resúmenes, Congreso Sociedad Española de Fitopatología, VIII (p 78) Córdoba, SpainGoogle Scholar
  28. Raeder U and Broda P (1985) Rapid DNA preparation from filamentous fungi. Letters of Applied Microbiology 1: 17-20Google Scholar
  29. Rohlf FJ (1988) NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System. Version 1.80. Exeter Software, Setauket, NYGoogle Scholar
  30. Sneath P and Sokal R(1973) Numerical Taxonomy: the Principles and Practice of Numerical Classification. W.H. Freeman and Co., San Francisco, CAGoogle Scholar
  31. Trapero-Casas A and Jiménez-Díaz RM (1985) Fungal wilt and root rot diseases of chickpea in southern Spain. Phytopathology 75: 1146-1151Google Scholar
  32. Williams JGK, Kubelik AR, Livak KJ, Rafolski JA and Tingey SV (1990) DNApolymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18: 6531-6535Google Scholar
  33. Woo SL, Zoina A, del Sorbo G, Lorito M, Nanni B, Scala F and Noviello C (1996) Characterization of Fusarium oxysporum f. sp. phaseoli by pathogenic races VCGs, RFLPs, and RAPDs. Phytopathology 86: 966-973Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • María del Mar Jiménez-Gasco
    • 1
  • Encarnación Pérez-Artés
    • 1
  • Rafael M. Jiménez-Diaz
    • 1
    • 2
  1. 1.Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible (IAS)Consejo Superior de Investigaciones Científicas (CSIC)CórdobaSpain
  2. 2.Escuela Técnica Superior de Ingenieros Agrónomos y Montes (College of Agriculture and Forestry)Universidad de CórdobaCórdobaSpain

Personalised recommendations