Designs, Codes and Cryptography

, Volume 24, Issue 1, pp 81–97 | Cite as

True Dimension of Some Binary Quadratic Trace Goppa Codes

  • P. Véron
Article

Abstract

We compute in this paper the true dimension over \(\mathbb{F}_2\) of Goppa Codes Γ(L, g) defined by the polynomial \(g(z) = {\text{Tr}}_{\mathbb{F}_{2^{2s} } :\mathbb{F}_{2^s } } (z)\) proving, this way, a conjecture stated in [14,16].

Goppa codes trace operator redundancy equation parameters of Goppa codes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Bezzateev and E. T. Mironchikov, N. A. Shekhunova, One subclass of binary Goppa codes, Proc. XI Simp. po Probl. Izbit. v Inform. Syst. (1986) pp. 140–141.Google Scholar
  2. 2.
    S. V. Bezzateev and N. A. Shekhunova, On the subcodes of one class Goppa Codes, Proc. Intern. Workshop Algebraic and Combinatorial Coding Theory ACCT-1 (1988) pp. 143–146.Google Scholar
  3. 3.
    S. V. Bezzateev, E. T. Mironchikov and N. A. Shekhunova, A Subclass of Binary Goppa Code, Problemy Peredachi Informatsii, Vol. 25, No. 3 (1989) pp. 98–102.Google Scholar
  4. 4.
    S. V. Bezzateev and N. A. Shekhunova, Subclass of Binary Goppa Codes with Minimal Distance Equal to the Design Distance, IEEE Trans. Info. Theory, Vol. 41, No 2 (1995) pp. 554–555.Google Scholar
  5. 5.
    S. V. Bezzateev and N. A. Shekhunova, A subclass of binary Goppa codes with improved estimation of the code dimension, Design, Codes and Cryptography, Vol. 14, No. 1 (1998) pp. 23–38.Google Scholar
  6. 6.
    A. Canteaut and F. Chabaud, A new algorithm for finding minimum-weightwords in a linear code: Application to McEliece's cryptosystem and to narrow-sense BCH codes of length 511, IEEE Trans. Info. Theory, Vol. 44, No. 1 (1998) pp. 367–378.Google Scholar
  7. 7.
    P. Delsarte, On subfield subcodes of modified reed-solomon codes, IEEE Trans. Info. Theory, Vol. IT-21 (1975) pp. 575–576.Google Scholar
  8. 8.
    V. D. Goppa, A new class of linear error correcting codes, Probl. Pered. Inform., Vol. 6, (1970) pp. 24–30.Google Scholar
  9. 9.
    V.S. Pless and W.C. Huffman (eds.), Handbook of Coding Theory, Vol. 1, North Holland, 1998.Google Scholar
  10. 10.
    J. M. Jensen, Subgroup subcodes, IEEE Trans. Info. Theory, Vol. 41, No. 3 (1995) pp. 781–785.Google Scholar
  11. 11.
    M. Loeloeian, J. Conan, A transform approach to goppa codes, IEEE Trans. Info. Theory, Vol. IT-33 (1987) pp. 105–115.Google Scholar
  12. 12.
    F. J. Mac Williams and N. J. A. Sloane, The Theory of Error Correcting Codes, North Holland (1983).Google Scholar
  13. 13.
    A. M. Roseiro, The Trace Operator and Generalized Goppa Codes, Ph.D. Dissert., Dept. of Elect. Eng., Michigan State Univ., East Lansing, MI 48823 (1989).Google Scholar
  14. 14.
    A. M. Roseiro, J. I. Hall, J. E. Hadney, M. Siegel, The trace operator and redundancy of Goppa codes, IEEE Trans. Info. Theory., Vol. 38, No 3. (1992) pp. 1130–1133.Google Scholar
  15. 15.
    H. Stichtenoth, On the dimension of subfield subcodes, IEEE Trans. Info. Theory., Vol. 36 (1990) pp. 90–93.Google Scholar
  16. 16.
    P. Véron, Goppa codes and trace operator, IEEE Trans. Info. Theory, Vol. 44, No. 1 (1998) pp. 290–295.Google Scholar
  17. 17.
    M. van der Vlugt, The true dimension of certain binary Goppa codes, IEEE Trans. Info. Theory., Vol. 36, No. 2, (1990) pp. 397–398..Google Scholar
  18. 18.
    M. van der Vlugt, On the dimension of trace codes, IEEE Trans. Info. Theory., Vol. 37, No. 1 (1991) pp. 196–199.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • P. Véron
    • 1
  1. 1.Groupe de Recherche en Informatique et Mathématiques (GRIM)Université de Toulon-VarLa Garde CedexFrance

Personalised recommendations