Advertisement

Journal of Sol-Gel Science and Technology

, Volume 22, Issue 1–2, pp 133–138 | Cite as

Control of Hydrolysis and Condensation Reactions of Titanium tert-butoxide by Chemical Modification with Catechol

  • Hideyasu Honda
  • Kentaro Suzaki
  • Yoshiyuki Sugahara
Article

Abstract

Titanium tert-butoxide (Ti(OC(CH3)3)4; Ti(O t Bu)4) was chemically modified with catechol (C6H4(OH)2) and hydrolysis and condensation behavior of a resultant modified alkoxide was studied. Spectroscopic results revealed that the reaction between titanium tert-butoxide and catechol resulted in the formation of catecholate groups (C6H4O22−) bound to titanium and corresponding release of tert-butanol. The mass spectrometry and cryoscopy indicated that main species was a dimer [(C6H4O2)2Ti2(O t Bu)4]. The hydrolysis of the modified alkoxide in the system with Ti:tetrahydrofuran (THF):H2O = 1:10:x (x = 0.5–10) resulted in the partial hydrolysis, and all the hydrolyzed products after the drying under reduced pressure were soluble in THF and chloroform.

titanium tert-butoxide catechol chemical modification hydrolysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.L. Linsebigler, G. Lu, and T. Yates Jr., Chem. Rev. 95, 735 (1995).Google Scholar
  2. 2.
    B. O'Regan and M. Grätzel, Nature 353, 737 (1991).Google Scholar
  3. 3.
    T.E. Mallouk, Nature 353, 698 (1991).Google Scholar
  4. 4.
    K.L. Hardee and A.J. Bard, J. Electrochem. Soc. 122, 739 (1975).Google Scholar
  5. 5.
    H. Kishimoto, K. Takahama, N. Hashimoto, Y. Aoi, and S. Deki, J. Mater. Chem. 8, 2019 (1998).Google Scholar
  6. 6.
    T. Yoko, K. Kamiya, and S. Sakka, Yogyo-Kyokai-Shi, 95, 150 (1987).Google Scholar
  7. 7.
    C. Sanchez and F. Ribot, New J. Chem. 18, 1007 (1994).Google Scholar
  8. 8.
    C.J. Brinker and G.W. Scherer, Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing (Academic Press, Boston, 1990), p. 52.Google Scholar
  9. 9.
    A. Léaustic, F. Babonneau, and J. Livage, Chem. Mater. 1, 240 (1989).Google Scholar
  10. 10.
    A. Léaustic, F. Baboneau, and J. Livage, Chem. Mater. 1, 248 (1989).Google Scholar
  11. 11.
    S. Doeuff, M. Henry, C. Sanchez, and J. Livage, J. Non-Cryst. Solids 89, 206 (1987).Google Scholar
  12. 12.
    S. Barboux-Doeuff and C. Sanchez, Mater. Res. Bull. 29, 1 (1994).Google Scholar
  13. 13.
    Y. Takahashi and Y. Matsuoka, J. Mater. Sci. 23, 2259 (1988).Google Scholar
  14. 14.
    D.D. Dunuwila, D. Gagliardi, and K.A. Berglund, Chem. Mater. 6, 1556 (1994).Google Scholar
  15. 15.
    A. Yasumori, K. Ishizu, S. Hayashi, and K. Okada, J. Mater. Chem. 8, 2521 (1998).Google Scholar
  16. 16.
    D.C. Bradley, R.C. Mehrotra, and D.P. Gaur, Metal Alkoxides (Academic Press, London, 1978), p. 175.Google Scholar
  17. 17.
    A.R. Siedle, in Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, R.D. Gillard, and J.A. McCleverty (Pergamon Press, Oxford, 1987), p. 365.Google Scholar
  18. 18.
    G.H. Dahl and B.P. Block, Inorg. Chem. 5, 1394 (1966).Google Scholar
  19. 19.
    R. Hara and T. Mukaiyama, Chem. Lett. 1909 (1989).Google Scholar
  20. 20.
    D.F. Shriver and M.A. Drezdzon, The Manipulation of Air-Sensitive Compounds, 2nd ed. (Wiley-Interscience, New York, 1986).Google Scholar
  21. 21.
    Y. Ito, M. Nakahara, and Y. Kondo, Nippon Kagaku Zasshi 92, 227 (1971).Google Scholar
  22. 22.
    B.A. Borgias, S.R. Cooper, Y.B. Koh, and K.N. Raymond, Inorg. Chem. 23, 1009 (1984).Google Scholar
  23. 23.
    X. Lei, M. Shang, and T.P. Fehlner, Organometallics 16, 5289 (1997).Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Hideyasu Honda
    • 1
  • Kentaro Suzaki
    • 1
  • Yoshiyuki Sugahara
    • 1
  1. 1.Department of Applied ChemistryWaseda UniversityShinjuku-ku, TokyoJapan

Personalised recommendations