Journal of Sol-Gel Science and Technology

, Volume 21, Issue 3, pp 157–165 | Cite as

Modification of Non-Hydrolytic Sol-Gel Derived Alumina by Solvent Treatments

  • G.S. Grader
  • G.E. Shter
  • D. Avnir
  • H. Frenkel
  • D. Sclar
  • A. Dolev
Article

Abstract

The effect of wetting non-hydrolytic derived alumina xerogels with water and organic solvents in the 20–70°C range on the alumina's properties was investigated. Wetting with organic solvents does not affect the alumina. However, contact with water was found to change the sharp crystallization at ∼800°C to a continuous crystallization starting at ∼450°C. Water treatment for a day at room temperature (RT) followed by second calcination decreased the surface area by 10%. This decrease in surface area is less pronounced with increasing wetting periods. On the other hand water treatment at 50–70°C followed by a second calcination resulted in a surface area increase of up to 15%. Upon water treatment the total pore volume has decreased from 0.65 (cm3/gr) to 0.48 (cm3/gr) and the average pore size decreased from 6.8 nm to 4.1 nm. The Cl content was found to be uneffected by the water treatment, remaining at ∼2.5% wt. Wetting with water at elevated temperature (70°C) accelerated the morphological changes, eliminating the crystallization peak at 800°C in one hour. A dissolution-reprecipitation mechanism is suggested to explain the results. In addition, Mass-Spectroscopy of the effluent gas during heat treatment revealed the emission of CO2 and water upon phase transition into α-Al2O3, at 1150–1300°C.

non-hydrolytic sol-gel alumina solvent modification calcination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.K. Oberlander, in Applied Industrial Catalysis V(3), edited by B.E. Leach (Academic Press, London, 1984), p. 63.Google Scholar
  2. 2.
    B.E. Yoldas, J. Appl. Chem. Biotechnol. 23, 803 (1973).Google Scholar
  3. 3.
    C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, New York, 1990).Google Scholar
  4. 4.
    Y. de Hazan, G.E. Shter, Y. Cohen, C. Rottman, D. Avnir, and G.S. Grader, J. Sol-Gel Sci. Technol. 14(3), 233 (1999).Google Scholar
  5. 5.
    G.S. Grader, Y. de Hazan, D.B. Zhivotovskii, and G.E. Shter, J. Sol-Gel Sci. Techl. 10, 127 (1997).Google Scholar
  6. 6.
    S. Acosta, R. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, J. Sol-Gel Sci. Tech. 2, 25 (1994).Google Scholar
  7. 7.
    S. Acosta, P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, in Better Ceramics through Chemistry VI, Mater. Res. Soc. Symp. Proc. 346, 43 (1994).Google Scholar
  8. 8.
    S. Acosta, R.J.P. Corriu, D. Leclercq, P. Lefevre, P.H. Mutin, and A. Vioux, J. Non-Cryst. Solids 170, 234 (1994).Google Scholar
  9. 9.
    M. Andrianainarivelo, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, J. Mater. Chem. 7(2), 279 (1997).Google Scholar
  10. 10.
    M. Andrianainarivelo, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, Chem. Mater. 9(5), 1098 (1997).Google Scholar
  11. 11.
    M. Andrianainarivelo, R. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, J. Mater. Chem. 6(10), 1665 (1996).Google Scholar
  12. 12.
    J.T. Richardson, Principles of Catalyst Development (Plenum Press, New York, 1989).Google Scholar
  13. 13.
    S.Y. Lee and R. Aris, Catal. Rev. 27(2), 207 (1985).Google Scholar
  14. 14.
    J.H. de Boer, Angew. Chem. 64, 563 (1952).Google Scholar
  15. 15.
    L. Jacimovic, J. Stevovic, and S. Veljkovic, J. Phys. Chem. 76(24), 3625 (1972)Google Scholar
  16. 16.
    R.W. Maatman. P. Mahaffy, P. Hoekstra, and C. Addink, J. Catal. 23, 105 (1971).Google Scholar
  17. 17.
    H. Knozinger and P. Ratnasamy, Catal. Rev. 17(1), 31 (1978).Google Scholar
  18. 18.
    J.B. Peri, J. Phys. Chem. 69(1), 220 (1965).Google Scholar
  19. 19.
    D. Maret, G.M. Pajonk, and S.J. Teichner, in Spillover of Adsorbed Species, edited by G.M. Pajonk, S.J. Teichner, and J.E. Germain (Elsevier Science, Amsterdam, 1983), p. 215.Google Scholar
  20. 20.
    G.C. Bye and J.G. Robinson, Koll. Z., and Z. Polym. 198(1/2), 53 (1964).Google Scholar
  21. 21.
    J.A. Dyer, N.C. Scrivner, and S.K. Dental, Environ. Prog. 17(1), 1 (1998).Google Scholar
  22. 22.
    Y. de Hazan, Synthesis and characterization of alumina gel, Ph.D. Dissertation, Technion, Haifa, 1998.Google Scholar
  23. 23.
    J.P. Brunelle, Pure & Appl. Chem. 50, 1211 (1978).Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • G.S. Grader
    • 1
  • G.E. Shter
    • 1
  • D. Avnir
    • 2
  • H. Frenkel
    • 2
  • D. Sclar
    • 1
  • A. Dolev
    • 1
  1. 1.Chemical Engineering DepartmentTechnionHaifaIsrael
  2. 2.Institute of ChemistryThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations