Advertisement

Journal of Biomolecular NMR

, Volume 20, Issue 4, pp 365–377 | Cite as

Characterization of molecular alignment in aqueous suspensions of Pf1 bacteriophage

  • Markus Zweckstetter
  • Ad Bax
Article

Abstract

The phase diagram of Pf1 solutions has been studied indirectly by observation of 2H quadrupole splittings of the solvent signal and measurement of dipolar couplings in solute macromolecules. At low volume fractions of Pf1 and at high ionic strength, alignment of both the phage and the solute depends strongly on the strength of the magnetic field. Both the theoretical and experimentally determined phase diagram of Pf1 show that at low concentrations and high ionic strengths the solution becomes isotropic. However, just below the nematic phase boundary the behavior of the system is paranematic, with cooperative alignment which depends on the strength of the applied magnetic field. Above 16 mg/ml Pf1 is fully nematic up to 600 mM NaCl. Alignment of proteins with a significant electric dipole moment, which tends to be strong in Pf1, can be reduced by either high ionic strength or low phage concentration. Because ionic strength modulates both the orientation and magnitude of the alignment tensor in Pf1 medium, measurement at two ionic strengths can yield linearly independent alignment tensors.

alignment diamagnetic susceptibility dipolar coupling liquid crystal nematic paranematic Pf1 phage virial theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Hashimi, H.M., Valafar, H., Terrell, M., Zartler, E.R., Eidsness, M.K. and Prestegard, J.H. (2000) J. Magn. Reson., 143, 402-406.Google Scholar
  2. Barrientos, L.G., Louis, J.M. and Gronenborn, A.M. (2001) J. Magn. Reson., 149, 154-158.Google Scholar
  3. Bothner-By, A.A. (1996) In Encyclopedia of Nuclear Magnetic Resonance, Vol. 5 (Grant, D.M. and Harris, R.K., Eds), Wiley, Chichester, pp. 2932-2938.Google Scholar
  4. Bothner-by, A.A., Gayathri, C., Vanzijl, P.C.M., Maclean, C., Lai, J.J. and Smith, K.M. (1985) Magn. Reson. Chem., 23, 935-938.Google Scholar
  5. Cavagnero, S., Dyson, H.J. and Wright, P.E. (1999) J. Biomol. NMR, 13, 387-391.Google Scholar
  6. Clore, G.M. and Garrett, D.S. (1999) J. Am. Chem. Soc., 121, 9008-9012.Google Scholar
  7. Clore, G.M., Starich, M.R. and Gronenborn, A.M. (1998) J. Am. Chem. Soc., 120, 10571-10572.Google Scholar
  8. Cornilescu, G., Marquardt, J.L., Ottiger, M. and Bax, A. (1998) J. Am. Chem. Soc., 120, 6836-6837.Google Scholar
  9. Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J. and Bax, A. (1995) J. Biomol. NMR, 6, 277-293.Google Scholar
  10. Delaglio, F., Kontaxis, G. and Bax, A. (2000) J. Am. Chem. Soc., 122, 2142-2143.Google Scholar
  11. Dogic, Z. and Fraden, S. (1997) Phys. Rev. Lett., 78, 2417-2420.Google Scholar
  12. Finer, E.G. and Darke, A. (1974) Chem. Phys. Lipids, 12, 1-16.Google Scholar
  13. Fleming, K., Gray, D., Prasannan, S. and Matthews, S. (2000) J. Am. Chem. Soc., 122, 5224-5225.Google Scholar
  14. Gallagher, T., Alexander, P., Bryan, P. and Gilliland, G.L. (1994) Biochemistry, 33, 4721-4729.Google Scholar
  15. Gronenborn, A.M., Filpula, D.R., Essiz, M.Z., Achari, A., Whitlow, M., Wingfield, P.T. and Clore, G.M. (1991) Science, 253, 657-661.Google Scholar
  16. Hansen, M.R., Hanson, P. and Pardi, A. (2000) Methods Enzymol., 317, 220-240.Google Scholar
  17. Hansen, M.R., Rance, M. and Pardi, A. (1998) J. Am. Chem. Soc., 120, 11210-11211.Google Scholar
  18. Hanus, J. (1969) Phys. Rev. Lett., 178, 420.Google Scholar
  19. Herzfeld, J., Berger, A.E. and Wingate, J.W. (1984) Macromolecules, 17, 1718-1723.Google Scholar
  20. Hus, J.C., Marion, D. and Blackledge, M. (2000) J. Mol. Biol., 298, 927-936.Google Scholar
  21. Kassapidou, K., Heenan, R.K., Jesse, W., Kuil, M.E. and Vandermaarel, J.R.C. (1995) Macromolecules, 28, 3230-3239.Google Scholar
  22. Khokhlov, A.R. and Semenov, A.N. (1981) Physica, A108, 546-556.Google Scholar
  23. Khokhlov, A.R. and Semenov, A.N. (1982) Macromolecules, 15, 1272-1277.Google Scholar
  24. Khokhlov, A.R. and Semenov, A.N. (1982) Physica, A112, 605-614.Google Scholar
  25. Kostrikis, L.G., Liu, D.J. and Day, L.A. (1994) Biochemistry, 33, 1694-1703.Google Scholar
  26. Lekkerkerker, H.N.W., Coulon, P., Vanderhaegen, R. and Deblieck, R. (1984) J. Chem. Phys., 80, 3427-3433.Google Scholar
  27. Liu, D.J. and Day, L.A. (1994) Science, 265, 671-674.Google Scholar
  28. Makowski, L., Caspar, D.L.D. and Marvin, D.A. (1980) J. Mol. Biol., 140, 149-181.Google Scholar
  29. Manning, G.S. (1987) Biopolymers, 26, 1-3.Google Scholar
  30. Odijk, T. (1986) Macromolecules, 19, 2314-2329.Google Scholar
  31. Oldenbourg, R., Wen, X., Meyer, R.B. and Caspar, D.L.D. (1988) Phys. Rev. Lett., 61, 1851-1854.Google Scholar
  32. Ojennus, D.D., Mitton-Fry, R.M. and Wuttke, D.S. (1999) J. Biomol. NMR, 14, 175-179.Google Scholar
  33. Onsager, L. (1949) Ann. NY Acad. Sci., 51, 627-659.Google Scholar
  34. Ottiger, M. and Bax, A. (1998) J. Biomol. NMR, 12, 361-372.Google Scholar
  35. Ottiger, M. and Bax, A. (1999) J. Biomol. NMR, 13, 187-191.Google Scholar
  36. Ottiger, M., Delaglio, F. and Bax, A. (1998) J. Magn. Reson., 131, 373-8.Google Scholar
  37. Peng, J.W., Thanabal, V. and Wagner, G. (1991) J. Magn. Reson., 94, 82-100.Google Scholar
  38. Ramirez, B.E. and Bax, A. (1998) J. Am. Chem. Soc., 120, 9106-9107.Google Scholar
  39. Ramirez, B.E., Voloshin, O.N., Camerini-Otero, R.D. and Bax, A. (2000) Protein Sci., 9, 2161-2169.Google Scholar
  40. Ruckert, M. and Otting, G. (2000) J. Am. Chem. Soc., 122, 7793-7797.Google Scholar
  41. Sanders, C.R. and Schwonek, J.P. (1992) Biochemistry, 31, 8898-8905.Google Scholar
  42. Sass, J., Cordier, F., Hoffmann, A., Cousin, A., Omichinski, J.G., Lowen, H. and Grzesiek, S. (1999) J. Am. Chem. Soc., 121, 2047-2055.Google Scholar
  43. Sato, T. and Teramoto, A. (1991) Physica, A176, 72-86.Google Scholar
  44. Skrynnikov, N.R., Goto, N.K., Yang, D.W., Choy, W.Y., Tolman, J.R., Mueller, G.A. and Kay, L.E. (2000) J. Mol. Biol., 295, 1265-1273.Google Scholar
  45. Song, L., Kim, U.-S., Wilcoxon, J. and Schurr, J.M. (1991) Biopolymers, 31, 547-567.Google Scholar
  46. Stigter, D. (1977) Biopolymers, 16, 1435.Google Scholar
  47. Stigter, D. (1982) Macromolecules, 15, 635-641.Google Scholar
  48. Stroobants, A., Lekkerkerker, H.N.W. and Odijk, T. (1986) Macromolecules, 19, 2232-2238.Google Scholar
  49. Tang, J.X. and Fraden, S. (1993) Phys. Rev. Lett., 71, 3509-3512.Google Scholar
  50. Tang, J.X. and Fraden, S. (1995) Liquid Cryst., 19, 459-467.Google Scholar
  51. Tang, J.X. and Fraden, S. (1996) Biopolymers, 39, 13-22.Google Scholar
  52. Tjandra, N. and Bax, A. (1997) Science, 278, 1111-1114.Google Scholar
  53. Tjandra, N., Omichinski, J.G., Gronenborn, A.M., Clore, G.M. and Bax, A. (1997) Nat. Struct. Biol., 4, 732-738.Google Scholar
  54. Tjandra, N., Tate, S., Ono, A., Kainosho, M. and Bax, A. (2000) J. Am. Chem. Soc., 122, 6190-6200.Google Scholar
  55. Tolman, J.R., Flanagan, J.M., Kennedy, M.A. and Prestegard, J.H. (1995) Proc. Natl. Acad. Sci. USA, 92, 9279-9283.Google Scholar
  56. Torbet, J. (1979) FEBS Lett., 108, 61-65.Google Scholar
  57. Torbet, J. and Maret, G. (1981) Biopolymers, 20, 2657-2669.Google Scholar
  58. Vroege, G.J. (1989) J. Chem. Phys., 90, 4560-4566.Google Scholar
  59. Vroege, G.J. and Odijk, T. (1988) Macromolecules, 21, 2848-2858.Google Scholar
  60. Zimmermann, K., Hagedorn, H., Heuck, C.C., Hinrichsen, M. and Ludwig, H. (1986) J. Biol. Chem., 261, 1653-1655.Google Scholar
  61. Zweckstetter, M. and Bax, A. (2000) J. Am. Chem. Soc., 122, 3791-3792.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Markus Zweckstetter
    • 1
  • Ad Bax
    • 1
  1. 1.Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaU.S.A

Personalised recommendations