Applied Categorical Structures

, Volume 9, Issue 4, pp 381–394 | Cite as

Purity and Equational Compactness of Projection Algebras

  • Mojgan Mahmoudi
  • M. Mehdi Ebrahimi
Article

Abstract

The notions of purity and equational compactness of universal algebras have been studied by Banaschewski and Nelson. Also, Banaschewski deals with these notions in the special case of G-sets for a group G. In this paper we study these and related concepts in the category PRO of projection algebras, that is in N-sets, for the monoid N with the binary operation m.n=min {m,n}. We show that every monomorphism in PRO is pure and hence every equationally compact projection algebra is in fact injective. Then, we introduce the notions of s-purity and s-compactness by which we characterize the retractions and hence equationally compact projection algebras. And, among other results, we show that equationally compact, injective, and complete projection algebras are the same. Finally, we characterize (pure-)essential monomorphisms and construct the Equationally Compact Hulls, equivalently the Injective Hulls, of projection algebras. These results, among other things, generalize the main results of Guili, regarding completeness and s-injectivity in the category PROs of separated projection algebras.

projection algebra pure sequence complete equationally compact s-pure s-compact s-injective pure-essential equational compact hull injective hull 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamek, J., Herrlich, H. and Strecker, G. E.: Abstract and Concrete Categories, Wiley, New York, 1990.Google Scholar
  2. 2.
    Banaschewski, B.: Equational compactness of G-sets, Canad. Math. Bull. 17(1) (1974), 11-18.Google Scholar
  3. 3.
    Banaschewski, B.: Injectivity and essential extensions in equational classes of algebras, in Proceedings of the Conference on Universal Algebra (1969), Queen's Papers in Pure Appl. Math. 25, 1970, pp. 131-147.Google Scholar
  4. 4.
    Banaschewski, B. and Nelson, E.: Equational compactness in equational classes of algebras, Algebra Universalis 2 (1972), 152-165.Google Scholar
  5. 5.
    Berthiaume, P.: The injective envelope of S-sets, Canad. Math. Bull. 10(2) (1967), 261-273.Google Scholar
  6. 6.
    Bulman-Fleming, S.: On equationally compact semilattices, Algebra Universalis 2 (1972), 146-151.Google Scholar
  7. 7.
    Mehdi Ebrahimi, M.: Algebra in a Grothendieck topos: Injectivity in quasi-equational classes, J. Pure Appl. Algebra 26 (1982), 269-280.Google Scholar
  8. 8.
    Mehdi Ebrahimi, M.: Equational compactness of sheaves of algebras on a Noetherian locale, Algebra Universalis 16 (1983), 318-330.Google Scholar
  9. 9.
    Mehdi Ebrahimi, M. and Mahmoudi, M.: When is the category of separatedM-sets a quasitopos or a topos?, Bull. Iranian Math. Soc. 21(1) (1995), 25-33.Google Scholar
  10. 10.
    Mehdi Ebrahimi, M. and Mahmoudi, M.: Purity and equational compactness of G-sheaves, Technical Report, Shahid Beheshti University, 1997.Google Scholar
  11. 11.
    Ehrig, H., Parisi-Presicce, F., Boehm, P., Rieckhoff, C. Dimitrovici, C. and Grosse-Rhode, M.: Algebraic data type and process specifications based on projection spaces, Lecture Notes in Comput. Sci. 332 (1988), 23-43.Google Scholar
  12. 12.
    Ehrig, H., Parisi-Presicce, F., Bohem, P., Rieckhoff, C., Dimitrovici, C. and Grosse-Rhode, M.: Combining data type and recursive process specifications using projection algebras, Theoret. Comput. Sci. 71 (1990), 347-380.Google Scholar
  13. 13.
    Fuchs, L.: Algebraically compact modules over Noetherian rings, Indian J. Math. 9(2) (1967), 357-374.Google Scholar
  14. 14.
    Guili, E.: On m-separated projection spaces, Appl. Categorical Structures 2 (1994), 91-99.Google Scholar
  15. 15.
    Goldblatt, R.: Topoi: The Categorial Analysis of Logic, North-Holland, Amsterdam, 1986.Google Scholar
  16. 16.
    Grosse-Rhode, M.: Parametrized data type and process specifications using projection algebras, Lecture Notes in Comput. Sci. 393 (1988), 185-197.Google Scholar
  17. 17.
    Herrlich, H. and Ehrig, H.: The construct PRO of projection spaces: Its internal structure, Lecture Notes in Comput. Sci. 393 (1988), 286-293.Google Scholar
  18. 18.
    Maranda, J. M.: On pure subgroups of Abelian groups, Arch. Math. XI (1960), 1-13.Google Scholar
  19. 19.
    Taylor, W.: Pure-irreducible mono-unary algebras, Algebra Universalis 4 (1974), 235-243.Google Scholar
  20. 20.
    Taylor, W.: Residually small varieties, Algebra Universalis 2 (1972), 33-53.Google Scholar
  21. 21.
    Warfield, R. B., Jr.: Purity and algebraic compactness for modules, Pacific J. Math. 28(3) (1969), 699-719.Google Scholar
  22. 22.
    Weglorz, B.: Equationally compact algebras (I), Fund. Math. LIX (1966), 289-298.Google Scholar
  23. 23.
    Wenzel, G. H.: Subdirect irreducibility and equational compactness in unary algebras ‹A; ›, Arch. Math. XXI (1970), 256-264.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Mojgan Mahmoudi
    • 1
  • M. Mehdi Ebrahimi
    • 2
  1. 1.Department of MathematicsShahid Beheshti UniversityTehranIran
  2. 2.Iran

Personalised recommendations