Advertisement

Genetic Resources and Crop Evolution

, Volume 48, Issue 2, pp 165–182 | Cite as

Genetic differentiation in the olive complex (Olea europaea) revealed by RAPDs and RFLPs in the rRNA genes

  • G. Besnard
  • Ph. Baradat
  • D. Chevalier
  • A. Tagmount
  • A. Bervillé
Article

Abstract

We assessed the genetic differentiation of the Mediterranean olive from its wild relatives found in different geographic areas (Mediterranean, Asia, Africa) using eighty RAPDs revealed with eight primers. Variance analysis (AMOVA) enabled us to estimate the overall genetic differentiation parameters between wild populations. Oleasters from the Near East and Turkey were discriminated from the other Mediterranean populations. Olea laperrinei, O. maroccana and O. cerasiformis were the taxa the most related to the Mediterranean olive. In contrast, O. africana was shown to be the most genetically distant taxa from the Mediterranean olive. However, we characterised hybrid trees between these two taxa. Significant trends between genetic and geographic distances were met within the subspecies cuspidata and within the Mediterranean olive. A genetic diversity gradient was observed in both subspecies europaea and cuspidata. These results are in agreement with a mechanism of differentiation by distance in the O. europaea complex, but another non-exclusive mechanism could also be gene flow between differentiated taxa. Furthermore, we characterised the discriminating power of each RAPD to recognise the different taxa using intraclass correlation coefficients. Lastly, IGS-RFLPs enabled us to assess rDNA polymorphisms on a sub-sample of individuals. On the basis of these data, a low interspecifc differentiation was found. This suggests a recent genetic divergence between the different taxa of the O. europaea complex or the occurrence of gene flow during favourable periods or because human displacements. All the olive cultivars were genetically related to the oleaster populations supporting that Mediterranean is the olive domestication area.

Genetic structure Gene flow IGS Olea europaea RAPDs Ribosomal DNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angiolillo A., Mencuccini M. and Baldoni L. 1999. Olive genetic diversity assessed using amplified fragment length polymorphisms Theor. Appl. Genet. 98: 411-421.Google Scholar
  2. Baradat P. and Labbé T. 1995. OPEP: Un logiciel intégré pour l'amélioration des plantes pérennes. In Traitements statistiques des essais de sélection. Stratégies de sélection des plantes pérennes, CIRAD-CP (Ed.), pp. 303-330. Montpellier.Google Scholar
  3. Benzécri J.P. 1973. L'analyse des données. Tome I. La Taxonomie. Eds. Dunod, Paris.Google Scholar
  4. Besnard G. 1999. Étude de la diversité génétique de l'olivier cultivé et de ses formes sauvages apparentées à l'aide de marqueurs moléculaires: applications pour l'identification variétale et pour la gestion des ressources génétiques. These Université Montpellier II, 174 pages.Google Scholar
  5. Besnard G. and Bervillé A. 2000. Multiple origins for Mediterranean olive (Olea europaea L. subsp. europaea) based upon mitochondrial DNA polymorphisms. C.R. Acad. Sci., Paris, Sér III, 323: 178-181.Google Scholar
  6. Besnard G., Green P.S. and Bervillé A. Taxonomic revision of the genus Olea using molecular approaches. (Submitted).Google Scholar
  7. Besnard G., Khadari B., Villemur P. and Bervillé A. 2000. Cytoplasmic male sterility in the olive (Olea europaea L.). Theor. Appl. Genet. 100: 1018-1024.Google Scholar
  8. Bitonti M.B., Cozza R., Chiappetta A., Contento A., Minelli S., Ceccarelli M., Gelati M.T., Maggini F., Baldoni L. and Cionini P.G. 1999. Amount and organization of the heterochromatin in Olea europaea and related species. Heredity 83: 188-195.Google Scholar
  9. Browicz K. and Zielinski J. 1990. Chorology of trees and shrubs in south-west Asia and adjacent regions. Polish Scientific Publishers 7: 13-15.Google Scholar
  10. Chevalier A. 1948. L'origine de l'olivier cultivé et ses variations. Rev. Int. Bot. App. Agric. Trop. 28:1-25.Google Scholar
  11. de la Cruz M., Whitkus R., Gomez-Pompa A. and Mota-Bravo L. 1995. Origins of cacao cultivation. Nature 375: 542-543.Google Scholar
  12. Durham R.E. and Korban S.S. 1994. Evidence of gene introgression in apple using RAPD markers. Euphytica 79: 109-114.Google Scholar
  13. El Mousadik A. and Petit R.J. 1996. Chloroplast DNA phylogeography of the argan tree of Morocco. Mol. Ecol. 5: 547-555.Google Scholar
  14. Epperson B.K. 1990. Spatial patterns in genetic variation within plant populations. In: Brown, Clegg, Kahler & Weir (Eds.), Plant Population, Genetics, Breeding and Genetic Resources, pp. 229-277. Sinauer, Sunderland (Mass.).Google Scholar
  15. Excoffier L., Smouse P.E. and Quattro J.M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491.Google Scholar
  16. Goldsbrough P.B. and Cullis C.A. 1981. Characterization of the genes for ribosomal RNA in flax. Nucleic Acids Res. 8: 4851-4855.Google Scholar
  17. Green P.S. and Wickens G.E. 1989. The Olea europaea complex. The Davis & Hedge Festschrift, ed. Kit Tan, pp.287-299. Edinburgh University Press.Google Scholar
  18. Hewitt G.M. 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58: 247-276.Google Scholar
  19. Jeandroz S., Pugin A. and Bervillé A. 1996. Cloning and analysis of a 6.8-kb rDNA intergenic spacer region of the European ash (Fraxinus excelsior L.). Theor. Appl. Genet. 92: 1003-1008.Google Scholar
  20. Kabbaj A., Zeboudj F., Peltier D., Tagmount A., Tersac M., Dulieu H. and Bervillé A. 1995. Variation and phylogeny of the ribosomal DNA unit types and 5 S DNA in Petunia. Genet. Res. Crop Evol. 42: 311-325.Google Scholar
  21. Lashermes P., Cros J., Marmey P. and Charrier A. 1993. Use of random amplified DNA markers to analyse genetic variability and relationships of Coffea species. Genet. Res. Crop Evol. 40: 91-99.Google Scholar
  22. Lashermes P., Andrzejewski S., Bertrand B., Combes M.C., Dussert S., Graziosi G., Trouslot P. and Anthony F. 2000. Molecular analysis of introgressive breeding in coffee (Coffea arabica L.). Theor. Appl. Genet. 100:139-146.Google Scholar
  23. Lebart L., Morineau A. and Piron M. 1997. Statistique exploratoire multidimensionnelle. 2nd edition. Ed. Dunod, Paris, 439 pp.Google Scholar
  24. Luo H., Van Coppenolle B., Seguin M. and Boutry M. 1995. Mitochondrial DNA polymorphism and phylogenetic relationships in Hevea brasiliensis. Mol. Breed. 1: 51-63.Google Scholar
  25. Maley J. 1980. Les changements climatiques de la fin du Tertiaire en Afriqu: Leur conséquence sur l'apparition du Sahara et de sa végétation. In: The Sahara and the Nile, M.A.J. William & H. Faure (Eds.), pp. 63-86. AA Balkema, Rotterdam.Google Scholar
  26. Nei M. and Li W.H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA. 92:6720-6722.Google Scholar
  27. Quézel P. 1978. Analysis of the flora of Mediterranean and Sahara Africa. Ann. Mo. Bot. Gard. 65: 479-534.Google Scholar
  28. Quillet M.C., Madjidian N., Griveau Y., Serieys H., Tersac M., Lorieux M. and Bervillé A. 1995. Mapping genetic factors controlling pollen viability in an interspecific cross in Helianthus sect. Helianthus. Theor. Appl. Genet. 91: 1195-1202.Google Scholar
  29. Rogers S.O. and Bendich A.J. 1987. Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Mol. Biol. 9:509-520.Google Scholar
  30. Saitou N. and Nei M. 1987. The Neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.Google Scholar
  31. Sambrook J., Fritsch E.F. and Maniatis T. 1989. Molecular cloning. Second edition. Cold Spring Harbor Laboratory Press.Google Scholar
  32. Santoni S. and Bervillé A. 1992. Characterization of the nuclear ribosomal DNA units and phylogeny of Beta L. wild forms and cultivated beets. Theor. Appl. Genet. 83: 533-452.Google Scholar
  33. Saporta G. 1990. Probabilité, analyse des données et statistique. TECHNIP Ed., Paris, 493 pp.Google Scholar
  34. Shao J. and Tu D. 1995. The Jackknife and the Bootstrap. Springer Ed., New York, 516 pp.Google Scholar
  35. Terral J.F. and Arnold-Simard G. 1996. Beginnings of olive cultivation in Eastern Spain in relation to Holocene bioclimatic changes. Quaternary Res. 46: 176-185.Google Scholar
  36. Tremousaygue D., Grellet F., Delseny M., Delourme R. and Renard M. 1988. The large spacer of a nuclear ribosomal RNA gene from radish: organization and use as a probe in rapeseed breeding. Theor. Appl. Genet. 75: 298-3O4.Google Scholar
  37. Turrill W.B. 1951. Wild and cultivated olives.Kew Bull. 3: 437-442.Google Scholar
  38. Zohary D. 1994. The wild genetic resources of the cultivated olive. Acta Hort. 356: 62-65.Google Scholar
  39. Zohary D. and Hopf M. 1994. Domestication of plants in the Old World. Second edition. Oxford Clarendon Press, pp. 137-442.Google Scholar
  40. Zohary D. and Spiegel-Roy P. 1975. Beginnings of fruit growing in the Old World. Science 187: 319-327.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • G. Besnard
    • 1
  • Ph. Baradat
    • 1
  • D. Chevalier
    • 1
  • A. Tagmount
    • 1
  • A. Bervillé
    • 2
  1. 1.INRA-ENSA.M/UR.GAPMontpellier cedex 1France
  2. 2.INRA-ENSA.M/UR.GAPMontpellier cedex 1France Author for correspondence (fax

Personalised recommendations