The spatial arrangement of tubules in human dentin

  • J. H. Kinney
  • J. Oliveira
  • D. L. Haupt
  • G. W. Marshall
  • S. J. Marshall


We applied two-dimensional numerical methods to describe the spatial arrangement of tubules in human dentin. The methods considered were two-point correlation functions, entropy-like measures, and angular distributions between nearest neighbors. The correlation functions were based on Fourier transform methods. The latter two approaches were based on stochastic geometry, and involved developing the Delaunay tessellations of the tubule patterns and their dual Voronoi diagrams. We discovered that for analyzing the distribution of tubules the geometric methods of lattice tessellations were more sensitive to structural order of the tubules than were Fourier-based schemes. Analysis of the data indicated that dentinal tubules are highly ordered in normal dentin. © 2001 Kluwer Academic Publishers


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Garberoglio and M. Brannstrom, Arch. Oral Biol. 21 (1976) 355.Google Scholar
  2. 2.
    D. H. Pashley, Scan. Microsc. 3 (1989) 161.Google Scholar
  3. 3.
    D. H. Pashley, A. Okabe and P. Parham, Endo. Dent. Traumatol. 1 (1985) 176.Google Scholar
  4. 4.
    J. H. Kinney, M. Balooch, G. M. Marshall and S. J. Marshall, Arch. Oral Biol. 44 (1999) 813.Google Scholar
  5. 5.
    J. H. Kinney, M. Balooch, D. L. Haupt, S. J. Marshall and G. W. Marshall, J. Dent. Res. 74 (1995) 1179.Google Scholar
  6. 6.
    J. M. White, H. E. Goodis, S. J. Marshall and G. W. Marshall, J. Dent. Res. 73 (1994) 1560.Google Scholar
  7. 7.
    G. W. Marshall, M. Staninec, Y. Torii and S. J. Marshall, Scan. Micros. 3 (1989) 1043.Google Scholar
  8. 8.
    J. H. Kinney, M. Balooch, G. W. Marshall and S. J. Marshall, Arch. Oral Biol. 38 (1993) 1003.Google Scholar
  9. 9.
    R. Lenz, Geographical Anal. 11 (1979) 374.Google Scholar
  10. 10.
    G. P. Chapman, Econ. Geography 46 (1970) 317.Google Scholar
  11. 11.
    J. G. Berryman and S. C. Blair, J. Appl. Phys. 60 (1986) 1930.Google Scholar
  12. 12.
    P. B. Corson, J. Appl. Phys. 45 (1974) 3171.Google Scholar
  13. 13.
    B. N. Boots, Prof. Geographer 27 (1975) 426.Google Scholar
  14. 14.
    R. E. Miles, Math. Biosciences 6 (1970) 85.Google Scholar
  15. 15.
    K. V. Mardia, R. Edwards and M. L. Puri, Bull. Intern. Statist. Institute 47 (1977) 93.Google Scholar
  16. 16.
    B. N. Boots, Geographical Analysis 18 (1986) 250.Google Scholar
  17. 17.
    C. E. Shannon and W. Weaver, in “The Mathematical Theory of Communication” (University of Illinois Press, Urbana, 1949).Google Scholar
  18. 18.
    A. Okabe, B. N. Boots and K. Sugihara, in “Spatial Tessellations: Concepts and Applications of Voronoi Diagrams” (John Wiley and Sons, Chichester, 1992).Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • J. H. Kinney
    • 1
  • J. Oliveira
    • 2
  • D. L. Haupt
    • 3
  • G. W. Marshall
    • 1
  • S. J. Marshall
    • 1
  1. 1.Division of Bioengineering and Biomaterials, Department of Preventive and Restorative Dental SciencesUniversity of California, San FranciscoSan Francisco
  2. 2.Battelle Pacific Northwest LabRichland
  3. 3.Lawrence Livermore National LaboratoryLivermore

Personalised recommendations