Advertisement

Autonomous Robots

, Volume 11, Issue 2, pp 137–148 | Cite as

Advanced and Intelligent Control Techniques Applied to the Drive Control and Path Tracking Systems on a Robotic Wheelchair

  • Felipe Espinosa
  • Elena López
  • Raúl Mateos
  • Manuel Mazo
  • Ricardo García
Article

Abstract

This paper presents the theoretical support and experimental results of the application of advanced and intelligent control techniques to the drive control and trajectory tracking systems on a robotic wheelchair. The adaptive optimal control of the differential drive helps to improve the automatic guidance system's safety and comfort taking into consideration operating conditions such as load and distribution changes or motion actuator limitations. Furthermore, the incorporation of an optimal controller to minimize location errors and a fuzzy controller to adapt the linear velocity to the characteristics of the trajectory, provide the vehicle with a high degree of intelligence and autonomy, even when faced with obstacles. The global control solution implemented increases the features of the wheelchair for handicapped people, especially for those with a high degree of disability.

adaptive and optimal drive control optimal and fuzzy path tracking obstacle avoidance robotic wheelchair 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borenstein, J. and Koren, Y. 1987. Motion control analysis of a mobile robot. Transactions of ASME, Journal of Dynamics, Measurement and Control, 109(2):73-79.Google Scholar
  2. Bryson, A.E. and Ho, Y.C. 1975. Applied Optimal Control, Halsted Press: Washington, D.C.Google Scholar
  3. Chandra, A., Dessaint, A., Saad, M., and Al-Haddad, K. 1994. Implementation of self-tuning algorithms for reference tracking of a DC drive using a DSP chip. IEEE Trans. on Industrial Electronics, 41(1):104-109.Google Scholar
  4. De Santis, R.M. 1994. Path-tracking for a tractor-trailer-like robot. The International Journal of Robotics Research, 13(6):533-544.Google Scholar
  5. Espinosa, F. 1998a. Aportación al modelado y control óptimo adaptativo de tracción y dirección para el guiado de vehículos autónomos. Doctoral Thesis, University of Alcalá, Spain.Google Scholar
  6. Espinosa, F. 1998b. Aportación al modelado y control óptimo adaptativo de tracción y dirección para el guiado de vehículos autónomos. Doctoral Thesis, University of Alcalá, Spain.Google Scholar
  7. Espinosa, F., Mazo, M., López, E., Ureña, J., Rodríguez, F.J, and García, J.J. 1998. Generación de trayectorias y detección de obstáculos mediante splines en el guiado de robotsmóviles. Centro de Información Tecnológica (CIT), 9(6):125-134.Google Scholar
  8. Espinosa, F., Santiso, E., López, E., and Mateos, R. 1997. Design and implementation of an electronic control system for a DC motor incorporating CACSD tools. In Proceedings of 4-th International Conference Computer Aided Engineering Education CAEE'97, Kraków, pp. II.46-II.53.Google Scholar
  9. Feng, L.Koren,Y., and Borenstein, J. 1994.Amodel-reference adaptive motion controller for a differential-drive mobile robot. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA, May 8-13, pp. 3091-3097.Google Scholar
  10. García, J.C., Marrón, M., García, J.A., Sotelo, M.A., Ureña, J., Lázaro, J.L., Rodríguez, F.J., Mazo, M., and Escudero, M.S. 1998. Field and Service Robotics, Springer: Berlin, pp. 405-410.Google Scholar
  11. Holly, A. Yanco. 1998. Wheelesley, a robotic wheelchair system: Indoor navigation and user interface. In Lecture Notes on Artificial Intelligence: Assistive Technology and Artificial Intelligence, V.O. Mittal, H.A. Yanco, J. Aronis, and R. Simspon (Eds.) Springer-Verlag: Berlin, pp. 256-268. http://www.ai.mit.edu/people/holly/wheelesley/.Google Scholar
  12. Jones, J.L. and Flynn, A.M. 1993. Mobile Robots. Inspiration to Implementation, A.K. Peters, Ltd: Wellesley, MA, USA.Google Scholar
  13. Levine, W.S. 1996. The Control Handbook. A CRC Handbook Published in Cooperation with IEEE Press. Google Scholar
  14. Liubakka, M.K., Rhode, D.S., Winkelman, J.R., and Kokotovic, P.V. 1993. Adaptive automotive speed control. IEEE Trans. on Automatic Control, 38(7):1011-1020.Google Scholar
  15. Mazo, M., García, J.C., Rodríguez, F.J., Ureña, J., Lázaro, J.L., and Espinosa, F. 2000. Integral system for assisted mobility. Information Sciences, 129: pp. 1-15.Google Scholar
  16. Mazo, M., Rodríguez, F.J., Lázaro, J.L., Ureña, J., García, J.C., Santiso, E., and Revenga, P. 1995. Electronic control of a wheelchair guided by voice commands. Control Eng. Practice, 3(5):665-674.Google Scholar
  17. Mazo, M., Ureña, J., García, J.C., Espinosa, F., Lázaro, J.L., Rodríguez, J., Bergasa, L.M., García, J.J., Boquete, L., Barea, R., Martín, P. 2001. SIAMO: An integral system for assisted mobility. IEEE Robotics and Automation Magazine, March (In press).Google Scholar
  18. Miller, D. and Slack, M. 1995. Tin Man II. Autonomous Robots, 77-88. see http://www.kipr.org/.Google Scholar
  19. Rompe, K. 1997. A comparison between four computing models of different complexity describing the steering behaviour of two-axled automobiles. The dynamics of vehicles, on roads and on tracks. In Proceedings 5th VSD-2nd International Union of Theorical and Applied Mechanics (IUTAM) Symposium, pp. 49-56.Google Scholar
  20. Södeström, T. and Stoica, P. 1980. System Identification, Prentice Hall International.Google Scholar
  21. Texas Instruments. 1997. TMS320 DSP Development Support. Reference Guide. Literature number: SPRU011E.Google Scholar
  22. Li-Xin Wang. 1990. Adaptive Fuzzy Systems and Control. Design and Stability Analysis, Prentice-Hall: Englewood Cliffs, NJ.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Felipe Espinosa
    • 1
  • Elena López
    • 1
  • Raúl Mateos
    • 1
  • Manuel Mazo
    • 1
  • Ricardo García
    • 1
  1. 1.Electronics DepartmentUniversity of AlcaláAlcalá de Henares, MadridSpain

Personalised recommendations