Advertisement

Journal of Computational Neuroscience

, Volume 11, Issue 1, pp 19–42 | Cite as

Do Neocortical Pyramidal Neurons Display Stochastic Resonance?

  • Michael Rudolph
  • Alain Destexhe
Article

Abstract

Neocortical pyramidal neurons in vivo are subject to an intense synaptic background activity that has a significant impact on various electrophysiological properties and dendritic integration. Using detailed biophysical models of a morphologically reconstructed neocortical pyramidal neuron, in which synaptic background activity was simulated according to recent measurements in cat parietal cortex in vivo, we show that the responsiveness of the cell to additional periodic subthreshold stimuli can be significantly enhanced through mechanisms similar to stochastic resonance. We compare several paradigms leading to stochastic resonance-like behavior, such as varying the strength or the correlation in the background activity. A new type of resonance-like behavior was obtained when the correlation was varied, in which case the responsiveness is sensitive to the statistics rather than the strength of the noise. We suggest that this type of resonance may be relevant to information processing in the cerebral cortex.

cerebral cortex synaptic background activity neocortex noise computational models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azouz R, Gray C (1999) Cellular mechanisms contributing to response variability of cortical neurons in vivo. J. Neurosci. 19:2209-2223.Google Scholar
  2. Benzi R, Suter A, Vulpiani A (1981) The mechanism of stochastic resonance. J. Phys. A14:L453-L457.Google Scholar
  3. Bezrukov SM, Vodyanoy I (1997) Stochastic resonance in nondynamical systems without response thresholds. Nature 385:319-321.Google Scholar
  4. Bulsara A, Jacobs EW, Zhou T, Moss F, Kiss L (1991) Stochastic resonance in a single neuron model: Theory and analog simulation. J. Theor. Biol. 152:531-555.Google Scholar
  5. Capurro A, Pakdaman K, Nomura T, Sato S (1998) Aperiodic stochastic resonance with correlated noise. Phys. Rev. E 58:4820-4827.Google Scholar
  6. Chialvo DR, Apkarian AV (1993) Modulated noisy biological dynamics: Three examples. J. Stat. Phys. 70:375-391.Google Scholar
  7. Chow CC, Imhoff TT, Collins JJ (1998) Enhancing aperiodic stochastic resonance through noise modulation. Chaos 8:616-620.Google Scholar
  8. Collins JJ, Chow CC, Imhoff TT (1995) Stochastic resonance without tuning. Nature 376:236-238.Google Scholar
  9. Collins JJ, Imhoff TT, Grigg P (1996) Noise enhanced information transmission in rat SA1 cutaneous mechanoreceptors via a periodic stochastic resonance. J. Neurophysiol. 76:642-645.Google Scholar
  10. Contreras D, Destexhe A, Steriade M (1997) Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo. J. Neurophysiol. 78:335-350.Google Scholar
  11. Contreras D, Timofeev I, Steriade M (1996) Mechanisms of long lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. J. Physiol. 494:251-264.Google Scholar
  12. Cook EP, Johnston D (1997) Active dendrites reduce location-dependent variability of synaptic input trains. J. Neurophysiol. 78:2116-2128.Google Scholar
  13. Cragg BG (1967) The density of synapses and neurons in the motor and visual areas of the cerebral cortex. J. Anat. 101:639-654.Google Scholar
  14. DeFelipe J, Fariñ as I (1992) The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs. Prog. Neurobiol. 39:563-607.Google Scholar
  15. Denk W, Webb WW (1989) Thermal-noise-limited transduction observed in mechanosensory receptors of the inner ear. Phys. Rev. Lett. 63:207-210.Google Scholar
  16. Destexhe A, Mainen ZF, Sejnowski TJ (1998) Kinetic models of synaptic transmission. In: Koch C, Segev I, eds. Methods in Neuronal Modeling (2nd ed.). MIT Press, Cambridge, MA, pp. 1-26.Google Scholar
  17. Destexhe A (2001) Simplified models of neocortical pyramidal cells preserving somatodendritic voltage attenuation. Neurocomputing. 38:167-173.Google Scholar
  18. Destexhe A, Paré D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J. Neurophysiol. 81:1531-1547.Google Scholar
  19. Douglas RJ, Wilkens L, Pantazelou E, Moss F (1993) Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365:337-340.Google Scholar
  20. Evarts EV (1964) Temporal patterns of discharge of pyramidal tract neurons during sleep and waking in the monkey. J. Neurophysiol. 27:152-171.Google Scholar
  21. Fauve S, Heslot FJ (1993) Stochastic resonance in a bistable system. Phys. Lett. A97:5-7.Google Scholar
  22. French CR, Sah P, Buckett KJ, Gage PW (1990) Avoltage-dependent persistent sodium current in mammalian hippocampal neurons. J. Gen. Physiol. 95:1139-1157.Google Scholar
  23. Gammaitoni L, Hänggi P, Jung P, Marchesoni F (1998) Stochastic resonance. Rev. Mod. Phys. 70:223-287.Google Scholar
  24. Gerstein GL, Bedenbaugh P, Aertsen AJ (1989) Neuronal assemblies. IEEE Trans. Biomed. Eng. 36:4-14.Google Scholar
  25. Gruner JE, Hirsch JC, Sotelo C (1974) Ultrastructural features of the isolated suprasylvian gyrus. J. Comp. Neurol. 154:1-27.Google Scholar
  26. Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Computation 9:1179-1209.Google Scholar
  27. Hô N, Destexhe A (2000) Synaptic background activity enhances the responsiveness of neocortical pyramidal neurons. J. Neurophysiol. 84:1488-1496.Google Scholar
  28. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500-544.Google Scholar
  29. Hubel D (1959) Single-unit activity in striate cortex of unrestrained cats. J. Physiol. 147:226-238.Google Scholar
  30. Huber MT, Krieg JC, Dewald M, Voigt K, Braun HA (1998) Stimulus sensitivity and neuromodulatory properties of noise intrinsic neuronal oscillators. BioSystems 48:95-104.Google Scholar
  31. Huguenard JR, Hamill OP, Prince DA (1988) Developmental changes in Na+ conductances in rat neocortical neurons: Appearance of a slow inactivating component. J. Neurophysiol. 59:778-795.Google Scholar
  32. Huguenard JR, McCormick DA (1992) Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J. Neurophysiol. 68:1373-1383.Google Scholar
  33. Ivey C, Apkarian AV, Chivalvo DR (1998) Noise-induced tuning curve changes in mechanoreceptors. J. Neurophysiol. 79:1879-1890.Google Scholar
  34. Jaramillo F, Wiesenfeld K (1998) Mechanoelectrical transduction assisted by Brownian motion: A role for noise in the auditory system. Nature Neuroscience 1:384-388.Google Scholar
  35. Johnston D, Magee JC, Colbert CM, Cristie BR (1996) Active properties of neuronal dendrites. Annual Rev. Neurosci. 19:165-186.Google Scholar
  36. Lampl I, Reichova I, Ferster D (1999) Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron 22:361-374.Google Scholar
  37. Larkman AU (1991) Dendritic morphology of pyramidal neurons of the visual cortex of the rat. III. Spine distributions. J. Comp. Neurol. 306:332-343.Google Scholar
  38. Lee SG, Kim S (1999) Parameter dependence of stochastic resonance in the stochastic Hodgkin-Huxley neuron. Phys. Rev. E 60:826-830.Google Scholar
  39. Lee SG, Neiman A, Kim S (1998) Coherence resonance in a Hodgkin-Huxley neuron. Phys. Rev. E 57:3292-3297.Google Scholar
  40. Levin JE, Miller JP (1996) Broadband neural coding in the cricket sensory system enhanced by stochastic resonance. Nature 380:165-168.Google Scholar
  41. Longtin A (1993) Stochastic resonance in neuron models. J. Stat. Phys. 70:309-327.Google Scholar
  42. Longtin A, Bulsara A, Moss F (1991) Time-interval sequences in bistable systems and the noise-induced transmission of information by sensory neurons. Phys. Rev. Lett. 67:656-659.Google Scholar
  43. Longtin A, Chialvo DR (1998) Stochastic and deterministic resonance for excitable systems. Phys. Rev. Lett. 81:4012-4015.Google Scholar
  44. Lytton WW (1996) Optimizing synaptic conductance calculation for network simulations. Neural Computation 8:501-509.Google Scholar
  45. Magee JC, Johnston D (1995a) Characterization of single voltagegated sodium and calcium channels in the apical dendrites of rat CA1 pyramidal neurons. J. Physiol. 487:67-90.Google Scholar
  46. Magee JC, Johnston D (1995b) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268:301-304.Google Scholar
  47. Mar DJ, Chow CC, Gerstner W, Adams RW, Collins JJ (1999) Noise shaping in populations of coupled model neurons. Proc. Natl. Acad. Sci. USA 96:10450-10455.Google Scholar
  48. Mato G (1998) Stochastic resonance in neural systems: Effects of temporal correlation in the spike trains. Phys. Rev. E 58:876-880.Google Scholar
  49. Matsumura M, Cope T, Fetz EE (1988) Sustained excitatory synaptic input to motor cortex neurons in awake animals revealed by intracellular recording of membrane potentials. Exp. Brain Res. 70:463-469.Google Scholar
  50. McCormick DA, Huguenard JR (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J. Neurophysiol. 68:1384-1400.Google Scholar
  51. Migliore M, Hoffman DA, Magee JC, Johnston D (1999) Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J. Comp. Neurosci. 7:5-15.Google Scholar
  52. Neiman A, Pei X, Russell D, Wojtenek W, Wilkens L, Moss F, Braun HA, Huber MT, Voigt K (1999a) Synchronization of the noisy electrosensitive cells in the paddlefish. Phys. Rev. Lett. 82:660-663.Google Scholar
  53. Neiman A, Schimansky-Geier L, Moss F, Shulgin B, Collins JJ (1999b) Synchronization of noisy systems by stochastic signals. Phys. Rev. E 60:284-292.Google Scholar
  54. Nicolis C (1982) Stochastic aspects of climatic transitions: Response to a periodic forcing. Tellus 34:1.Google Scholar
  55. Nowak LG, Sanchez-Vives MV, McCormick DA (1997) Influence of low and high frequency inputs on spike timing in visual cortical neurons. Cereb. Cortex 7:487-501.Google Scholar
  56. Paré D, Shink E, Gaudreau H, Destexhe A, Lang EJ (1998) Impact of spontaneous synaptic activity on the resting properties of cat neocortical neurons in vivo. J. Neurophysiol. 79:1450-1460.Google Scholar
  57. Pei X, Wilkens AL, Moss F (1996) Light enhances hydrodynamic signaling in the multimodal caudal photoreceptor interneurons of the crayfish. J. Neurophysiol. 76:3002-3011.Google Scholar
  58. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1993) Numerical Recipes in C: The Art of Scientific Computing. (2nd ed.). Cambridge University Press, Cambridge.Google Scholar
  59. Richardson KA, Imhoff TT, Grigg P, Collins JJ (1998) Using electrical noise to enhance the ability of humans to detect subthreshold mechanical cutaneous stimuli. Chaos 8:599-603.Google Scholar
  60. Rudolph M, Destexhe A (2000) Models of neocortical pyramidal neurons in the presence of correlated synaptic background activity: High discharge variability, enhanced responsiveness and independence of input location. Soc. Neurosci. Abstracts 26:1623.Google Scholar
  61. Segev I, Rall W (1998) Excitable dendrites and spines: Earlier theoretical insights elucidate recent direct observations. Trends Neurosci. 21:453-460.Google Scholar
  62. Shimokawa T, Rogel A, Pakdaman K, Sato S (1999) Stochastic resonance and spike-timing precision in an ensemble of leaky integrate and fire neuron models. Phys. Rev. E 59:3461-3470.Google Scholar
  63. Simonotto E, Riani M, Seife C, Roberts M, Twitty J, Moss F (1997) Visual perception of stochastic resonance. Phys. Rev. Lett. 78:1186-1189.Google Scholar
  64. Srebo R, Malladi P (1999) Stochastic resonance of the visually evoked potential. Phys. Rev. E 59:2566-2570.Google Scholar
  65. Stacey WC, Durand DM (2000) Stochastic resonance improves signal detection in hippocampal CA1 neurons. J. Neurophysiol. 83:1394-1402.Google Scholar
  66. Steriade M (1978) Cortical long-axoned cells and putative interneurons during the sleep-waking cycle. Behav. Brain Sci. 3:465-514.Google Scholar
  67. Steriade M, Timofeev I, Grenier F (2001) Natural waking and sleep states: A view from inside neocortical neurons. J. Neurophysiol. 85:1969-1985.Google Scholar
  68. Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69-72.Google Scholar
  69. Szentagothai J (1965) The use of degeneration in the investigation of short neuronal connections. In: Singer M, Shade JP, eds. Progress in Brain Research 14. Elsevier, Amsterdam. pp. 1-32.Google Scholar
  70. Traub RD, Miles R (1991) Neuronal Networks of the Hippocampus. Cambridge University Press, Cambridge.Google Scholar
  71. Wang W, Wang Y, Wang ZD (1998) Firing and signal transduction associated with an intrinsic oscillation in neuronal systems. Phys. Rev. E 57:R2527-R2530.Google Scholar
  72. White EL (1989) Cortical Circuits. Birkhauser, Boston.Google Scholar
  73. Wiesenfeld K, Moss F (1995) Stochastic resonance and the benefits of noise: From ice ages to crayfish and SQUIDS. Nature 373:33-36.Google Scholar
  74. Yamada WM, Koch C, Adams PR (1989) Multiple channels and calcium dynamics. In: Koch C, Segev I, eds. Methods in Neuronal Modeling. MIT Press, Cambridge, MA.Google Scholar
  75. Zhou T, Moss F (1990) Analog simulations of stochastic resonance. Phys. Rev. A41:4255-4264.Google Scholar
  76. Zohary E, Shadlen MN, Newsome WT (1994) Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370:140-143.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Michael Rudolph
    • 1
    • 2
  • Alain Destexhe
    • 1
    • 2
  1. 1.Unité de Neurosciences Intégratives et Computationnelles, CNRSGif-sur-YvetteFrance
  2. 2.Department of PhysiologyLaval UniversityQuébecCanada

Personalised recommendations