Advertisement

Potential Analysis

, Volume 14, Issue 4, pp 387–408 | Cite as

Generalized Feynman–Kac Semigroups, Associated Quadratic Forms and Asymptotic Properties

  • T.S. Zhang
Article

Abstract

In this paper, we study the Feynman–Kac semigroup

Ttf(x)=Ex[f(Xt)exp(Nt)],

where Xt is a symmetric Levy process and Nt is a continuous additive functional of zero energy which is not necessarily of bounded variation. We identify the corresponding quadratic form and obtain large time asymptotics of the semigroup. The Dirichlet form theory plays an important role in the whole paper.

Dirichlet form additive functional Feynman–Kac functional and Feynman–Kac semi-group. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albeverio, S. and Ma, Z. M.: ‘Perturbation of Dirichlet forms-lower semiboundedness, closability and form cores’, Journal of Functional Analysis 99(1991), 332-356.Google Scholar
  2. 2.
    Blanchard, Ph. and Ma, Z. M.: ‘Semigroup of Schrödinger operators with potentials given by Radon measures’. In: Stochastic Processes-Physics and Geometry, S. Albeverio et al. (eds) World Scient. Singapore, 1990.Google Scholar
  3. 3.
    Bogachev, V., Röckner, M. and Zhang, T. S.: ‘Existence of invariant measures: A quadratic form approach’. Preprint, Bielefeld, 1997.Google Scholar
  4. 4.
    Fitzsimmons, P. J.: ‘Even and odd continuous additive functionals’, In: Dirichlet forms and stochastic processes, Z. M. Ma, M. Röckner and J. A. Yan (eds), de Gruyter Berlin, New York, (1995), 139-154.Google Scholar
  5. 5.
    Fukushima, M.: ‘Dirichlet forms and Markov processes’. Amsterdam, Oxford, New York, North Holland, 1980.Google Scholar
  6. 6.
    Fukushima, M.: ‘On a decomposition of additive functionals in the strict sense for a symmetric Markov process’. In: Dirichlet Forms and Stochastic Processes, Z. M. Ma, M. Röckner and J.A. Yan (eds), de Gruyter Berlin, New York, (1995), 155-169.Google Scholar
  7. 7.
    Glover, J., Rao, M., Sikic, H. and Song, R.: ‘Quadratic forms corresponding to the generalized Schrödinger semigroups’, Journal of Functional Analysis 125(2) (1994), 358-379.Google Scholar
  8. 8.
    Lyons, T. J. and Zhang, T. S.: ‘Decomposition of Dirichlet processes and its applications’, The Annals of Probability 22(1) (1994), 494-524.Google Scholar
  9. 9.
    Lyons, T. J., Lunt, J. and Zhang, T. S.: ‘Integrability of functionals of Dirichlet processes, probabilistic representations of semigroups and estimates of heat kernels’. Preprint, Haugesund, London, 1997. To appear in Journal of Functional Analysis.Google Scholar
  10. 10.
    Ma, Z. M. and Röckner, M.: ‘Introduction to the theory of (non-symmetric) Dirichlet forms’, Springer-Verlag, Berlin, Heidelberg, 1992.Google Scholar
  11. 11.
    Nakao, S.: ‘Stochastic calculus for continuous additive functionals of zero energy’, Z. Wahrscheinlichkeitstheorie verw. Gebiete 68(1985), 557-578.Google Scholar
  12. 12.
    Röckner, M. and Zhang, T. S.: ‘Uniqueness of generalized Schrödinger operators and applications’, Journal of Functional Analysis 105(1992), 187-231.Google Scholar
  13. 13.
    Röckner, M. and Zhang, T. S.: ‘Uniqueness of generalized Schrödinger operators and applications II’, Journal of Functional Analysis 119(1994), 455-467.Google Scholar
  14. 14.
    Song, R.: ‘Feynman-Kac semigroup with discontinuous additive functionals’, Journal of Theoretical Probability 8(2) (1995), 727-762.Google Scholar
  15. 15.
    Takeda, M.: ‘Asymptotic properties of generalized Feynman-Kac functionals’, preprint, 1995.Google Scholar
  16. 16.
    Takeda, M.: ‘Asymptotic properties of generalized Feynman-Kac functionals II’, preprint, 1995.Google Scholar
  17. 17.
    Takeda, M. and Zhang, T. S.: ‘Asymptotic properties of additive functionals of Brownian motion’, The Annals of Probability 25(2) (1997), 940-952.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • T.S. Zhang
    • 1
  1. 1.Department of MathematicsUniversity of ManchesterManchesterU.K

Personalised recommendations