Wetlands Ecology and Management

, Volume 9, Issue 2, pp 121–134 | Cite as

The role of salt marshes in the Mira estuary (Portugal)

  • M.J. Costa
  • Fernando Catarino
  • Alexandre Bettencourt


The Mira estuary is a narrow entrenched pristine estuary of the Ria type, about 30 km long. It comprises an area of 285 ha of salt marsh, of which250 ha have been proposed for reclamation for aquaculture. Dredging, village and recreation development menace the yet undisturbed estuarine ecosystem. To assess the biological importance of this wetland, a multidisciplinary study was conducted in apart of the salt marsh, considered as being representative of the whole area. Halophytic vegetation covering 75% of the total salt marsh site is dominated by Spartina maritima (28% of total vegetation area). Total primary production attains63,766 kg/yr (dw). A net export of 1541 kg/yr of COM to the relatively oligotrophic adjacent waters was also found. Insects and birds are described for the first time in the saltmarsh. Macrobenthic communities are dominated by Hediste diversicolor, Nepthys caeca and Scrobicularia plana. The fiddler crabUca tangeri attains here its north distribution limit. The mud flats and creeks associated with the salt marsh act as a nursery for 40.8% of the fish species present. The food web is dominated by detritivorous species like the grey mullets. The results obtained in this study support the need for an effective conservation of this area.

food web import-export nursery outwelling primary production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almeida, P.M.R. 1996. Biologia e ecologia da Liza ramada (Risso, 1826) e Chelon labrosus (Risso, 1826) (Pisces, Mugilidae) no estuário doMira (Portugal). Inter-relaç õ es com o sistema estuarino. Ph.D. Thesis. Fac. Ciê ncias Universidade Lisboa.Google Scholar
  2. Andrade, F.A.L. 1986. O Estuário do rio Mira: Caracterizaç ã o geral e análise quantitativa da estrutura dos macropovoamentos bentó nicos. Ph.D. Thesis. Fac. Ciê ncias Universidade Lisboa.Google Scholar
  3. Bertness, M.D. 1992. The ecology of a New England salt marsh. American Scientist 80: 260–268.Google Scholar
  4. Bettencourt, A.M.M. 1985. Programa de trabalhos e parecer sobre o estabelecimento de instalaç õ es de piscicultura no estuário do rio Mira: DGO, MQV.Google Scholar
  5. Bettencourt, A.M.M. de, Abreu, M.C. de, Revez, M.A., Leitã o, A.B.C., Catarino, F.M. Serô dio, J., Neves, R.J.J., Baptista, P.O, Lança, M.J., Alves, M.J., Costa, M.J., Raposo, P. and Costa, J.L. 1992a. Final report on the Mira estuary studies. Comparative studies of salt marsh processes. ECE-DG XII-Lisbon.Google Scholar
  6. Bettencourt, A.M., Gomes, M.L.R., Vilas-Boas, L.F. and Cauwet, G. 1992b. Refractory dissolved organic carbon (RDOC) over an estuarine tidal cycle-implications for carbon budgets in Natural Water and Water Technology: Organic Matter in Natural Waters and Water Technology, European Science Foundation. Res. Conf. Espinho.Google Scholar
  7. Bettencourt, A.M.M. de and Matos, J.S. 1988. Hidrologia e Qualidade da Água, Plano Director Municipal de Odemira, EGF.Google Scholar
  8. Bettencourt, A.M.M. de, Neves, R.J.J., Lança, M.J., Batista. P.J. and Alves M.J. 1994. Uncertainties in import/export studies and the outwelling theory. An analysis with the support of hydrodynamic modelling In: Mitsch, W.J. (ed.), Global Wetlands: Old World and New. pp. 235-256. Elsevier: Amsterdam.Google Scholar
  9. Boorman, L.A., Hazelden, J., Loveland. P.J. and Wells, J.G. 1994. Comparative relationships between primary productivity and organic and nutrient fluxes in four salt marshes. In: Mitsch, W.J. (ed.), Global Wetlands: Old World and New. pp. 181-199. Elsevier: Amsterdam.Google Scholar
  10. Cardenas, S. 1977. Régimen alimenticio del sapo Halobatrachus didactylus (Shneider, 1801) (Pisces: Batrochoididae), en la bahía de Cádiz (Españ a Sodoccidental). Vie et Milieu 28: 111–129.Google Scholar
  11. Cattrijsse, A., Makawaia, E.S., Dankwa, H.R., Hemminga, M. and Hamerlynck, O. 1994. Nekton communities of an intertidal creek of a European estuarine brackish marsh. Marine Ecology Progress Series 109: 195–208.Google Scholar
  12. Costa, J.L. 1993. Abundance and distribution of the toadfish Halobatrachus didactylus in the Mira estuary: seasonal variations and ruling factors. Journal of Fish Biology 43 (Sup. A): 330.Google Scholar
  13. Costa, M.J. 1988. The Tagus and Mira estuaries (Portugal) and their role as spawning and nursery areas. Journal of Fish Biology 33 (Sup. A): 249–250.CrossRefGoogle Scholar
  14. Costa, M.J., Almeida, P.R., Costa, J.L. and Assis, C.A. 1994. Do eel grass beds and salt marsh borders act as preferential nurseries and spawning grounds for fish? — An example of the Mira estuary in Portugal. Ecological Engineering 3: 187–195.CrossRefGoogle Scholar
  15. Dame, R. T., Chrzanowski, T., Bildstein, K., Kjerfve, B., Mc Kellar, D., Nelson, Spurrier, J., Stancyk, S., Stevenson, SH., Vernberg, J. and Zingmark, R. 1986. The outwelling hypothesis and North 134 Inlet, South Carolina. Marine Ecology. Progress Series 33: 217–229.Google Scholar
  16. Dame, R.F. and Lefeuvre, J.C. 1994. Tidal exchange: importexport of nutrients and organic matter in new and old world salt marshes: conclusions. In: Mitsch, W.J. (ed.), Global Wetlands: Old World and New. pp. 303-305.Elsevier: Amsterdam.Google Scholar
  17. Dame, R.F. and Stillwell, O. 1984. The influence of environmental factors on floating macrodetritus flux in the North Inlet Ecosystem. Estuarine Coastal and Shelf Science 18: 721–726.CrossRefGoogle Scholar
  18. Danais, M. 1985. Production primaire du schorre et transports de matiérie organique flottante en baie du Mont Saint Michel. Rapport, fonctionnement des systè mes ecologiques en baie du Mont Saint Michel. CEE Environment et IRIEC.Google Scholar
  19. Dankers, N., Binsbengen, K., Zegers, Laane, R. and Van der Loeff, M.R. 1984. Transportation of water, particulate and dissolved organic and inorganic matter between a salt marsh and the Ems — Dollard estuary, the Netherlands. Estuarine Coastal and Shelf Science 19: 143–165.CrossRefGoogle Scholar
  20. Dickerman, J.A. Stewart, A.J. and Wetal, R.G. 1986. Estimates of net annual above ground production: sensitivity to sampling frequency. Ecology 67: 650–659.CrossRefGoogle Scholar
  21. Fairbridge, R.W. 1980. The estuary: its definition and geodynamic cycle. In: Olausson, E. and Cato, I. (eds.), Chemistry and Biogeochemistry of Estuaries. John Wiley.Google Scholar
  22. Gillet, P. 1990. Biomass, production et dynamique des populations de Nereis diversicolor in upper estuarine creek. Journal of Biological Education 19: 141–146.Google Scholar
  23. Hackney, C.T. 1977. Energy flux in a tidal creek draining an irregularly flooded Juncus Marsh. Ph.D. Thesis, Mississippi State University.Google Scholar
  24. Haines, E.B., Chalmers, R.B., Hanson, R B. and Sherr, B. 1977. Nitrogen pools and fluxes in a Georgia salt marsh. In: Wiley, M. (ed.), Estuarine Processes 2. pp. 241-254. Academic Press: New York.Google Scholar
  25. Hopkinson, C.S., Gosselink, J.G. and Parrando, R. T. 1980. Production of coastal Louisiana marsh plants calculated from phenometric techniques. Ecology 61: 1091–1098.CrossRefGoogle Scholar
  26. Humpreys, T.J. 1985. Production of Nereis diversicolor in an upper estuarine creek. Journal of Biological Education 19: 141–146.Google Scholar
  27. J.E.N. 1972 ‘Necessidades da água-estudos e análise’. DGCRNI, Jen Lisboa.Google Scholar
  28. Kneib, RT. 1997. The role of tidal marshes in the ecology of estuarine nekton. Oceanographic Marine Annual Revue 35: 163–230.Google Scholar
  29. Kirby, C.J. and Gosselink, J.G. 1976. Primary production in Louisiana gulf coast Spartina alterniflora marsh. Ecology 57: 1052–1059.CrossRefGoogle Scholar
  30. Lammens, E.J. and Van Eeden, M.J. 1977. Waardebepaling van een schor langs de Oosterschelde met betrekking tot zijn moglijke voor voedsel bijdrage tot het estuarium in de vorm van detritus.Studentenverslag D1-1977. Delta Instituut voor Hydrobiologische Onderzoek, Yerseke. 41 pp.Google Scholar
  31. Mitsch, J.W. and Gosselink, J.G. 1993. Wetlands. Van Nostrand Reinhold: New York.Google Scholar
  32. Montague, C.L. and Wiegert, R.G. 1990. Salt marshes. In: Meyers, R.L. and Ewel, J.J. (eds.), Ecosystems of Florida. pp. 481-516. University of Central Florida Press: Orlando.Google Scholar
  33. Nixon, S.W. 1980. Between coastal marshes and coastal waters-a review of twenty years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry. In: Hamilton, P. and MacDonald, K.B. (eds.), Estuarine andWetland Processes. pp. 437-525. Phenum: New York.Google Scholar
  34. Odum, E.P. 1980. The status of three ecosystem-level hypothesis regarding salt marsh estuaries: tidal, subsidy, outwelling and detritus based food chains. In: Kennedy, V.S. (ed.), Estuarine perspectives. pp. 485-495. Academic Press: New York.Google Scholar
  35. Serô dio, J., Cabrita, T. and Catarino, F. 1992. The role of epiphytic algal mats in the tidal exchange of suspended matter between salt marshes and estuaries: the case of the Mira Estuary, Portugal. Poster INTECOL's IV International Wetlands Conference, Columbus, USA, 13-18 September 1992.Google Scholar
  36. Sola, J.C. and Ibanez, M. 1990. Contribucion al estudio de los ciclos de vida de las especies Scrobicularia plana (Dacosta) y Nereis diversicolor (O.F. Müller) en el estuario del Bidasoa. In: Benthos 6. Act. VI Simposio Iberico Est. Bentos Marino. Palma de Maiorca: 69–79.Google Scholar
  37. Teal, J.M. 1962. Energy flow in the salt marsh ecosystem of Georgia. Ecology 43: 614–624.CrossRefGoogle Scholar
  38. Vegter, F. 1975. Phytoplankton production in the Grevelingen estuary in relation to nutrient cycles. 10th European Symposium on Marine Biology, Ostende.Google Scholar
  39. Wiegert, R.G. and Evans, F.C. 1964. Primary production and the disappearence of dead vegetation on an old fields in the southeastern Michigan. Ecology 45: 49–63.CrossRefGoogle Scholar
  40. Wolff, W.J. 1977. A benthic food bridget for the Grevelinger estuary, the Netherlands, and a conservation of the mechanisms causing high benthic secondary production in estuaries. In: Cool, J.C. The Ecology of Marine Benthos. University of South Carolina Press.Google Scholar
  41. Wolff, W.J., Van Deen, M.J. and Lammers, E. 1979. Primary production and import of particulate organic matter on a salt marsh in the Netherlands. Netherlands Journal of Sea Research 13: 242–255.CrossRefGoogle Scholar
  42. Wolaver, T.G. and Spurrier, J.D. 1988. The exchange of phosphorus between a eurihaline vegetated marsh and the adjacent tidal creek. Estuarine Coastal and Shelf Science 26: 203–214.Google Scholar
  43. Woodwell, G.M., Whitney, D.E., Hall, C.A.S. and Hourghton, R.A. 1977. The Flax Pond ecosystem study: exchanges of carbon in water between a salt marsh and Long Island Sound. Limnology and Oceanography 22: 833–838.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • M.J. Costa
    • 1
  • Fernando Catarino
    • 1
  • Alexandre Bettencourt
    • 2
  1. 1.Faculdade de Ciências, Instituto de OceanografiaUniversidade de Lisboa, Campo GrandeLisboaPortugal
  2. 2.Dep. EcologiaUniversidade de ÉvoraÉvoraPortugal

Personalised recommendations