Journal of Paleolimnology

, Volume 25, Issue 3, pp 375–392 | Cite as

Quantitative models for reconstructing catchment ice-extent using physical-chemical characteristics of lake sediments

  • P.E. Noon
  • H.J.B. Birks
  • V.J. Jones
  • J.C. Ellis-Evans
Article

Abstract

The physical characteristics of surface sediments from a suite of pristine lakes on Signy Island, maritime Antarctic, were used to develop a quantitative link between catchment ice-extent and lake-sediment response. Percentage dry weight, median particle size, percentage loss-on-ignition and wet density of the lakes' surface sediments were the most significant variables explaining contemporary catchment ice-extent. Two independent reconstruction models – Partial Least Squares (PLS) and a Modern Analog Technique (MAT) – were applied to dated sediment cores at two sites on Signy Island. The validity of the reconstructions was tested against historical information on catchment ice-extent. With sufficiently high sedimentation rates and sampling resolution, the models can predict sub-decadal changes in ice-extent. The model results are best regarded as indicators of erosion resulting from meltwater activity in the catchment. Comparison of results with Twentieth Century climate records affirms the hypothesis that climatic warming is the most likely cause for the ice retreat observed on Signy Island during the last 40 yrs. Similar reconstruction models using these simple sedimentary measures could be developed for analogous locations in the Antarctic and in Arctic and Alpine regions.

maritime Antarctic Signy Island lake sediments quantitative reconstructions catchment ice-extent glacial retreat climatic change 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, P. M, P. J. Bartlein, L. B. Brubacker, K. Gajewski & J. C. Ritchie, 1989. Modern analogues of late-Quaternary pollen spectra from the western interior of North America. J. Biogeogr. 16: 573–596.Google Scholar
  2. Appleby, P. G., V. J. Jones & J. C. Ellis-Evans, 1995. Radiometric dating of lake sediments from Signy Island (maritime Antarctic): evidence of recent climatic change. J. Paleolim. 13: 179–191.Google Scholar
  3. Ballantyne, C. K. & D. I. Benn, 1994. Paraglacial slope adjustment and resedimentation following glacier retreat, Fåbergstolsdalen, Norway. Arct. Alp. Res. 20: 255–269.Google Scholar
  4. Bartlein P. J. & C. Whitlock, 1993. Palaeoclimatic interpretation of the Elk Lake pollen record. Geol. Soc. Am. Special Paper 276: 275–293.Google Scholar
  5. Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In Statistical Modelling of Quaternary Science Data. Technical Guide 5, Quaternary Research Association, Cambridge, pp. 161–254.Google Scholar
  6. Birks, H. J. B., 1998. Numerical tools in palaeolimnology-progress, potentialities, and problems. J. Palaeolim. 20: 307–322.Google Scholar
  7. Björck, S., H. Håkansson, R. Zale, W. Karlén & B. L. Johnsson, 1991. A late Holocene lake sediment sequence from Livingston Island, South Shetland Islands, with palaeoclimatic interpretations. Antarct. Sci. 3: 61–72.Google Scholar
  8. Björck, S., H. Håkansson, S. Olsson, L. Barnekow & J. Janssens, 1993. Palaeoclimatic studies in South Shetland Islands, Antarctica, based on numerous stratigraphic variables in lake sediments. J. Paleolim. 8: 233–272.Google Scholar
  9. Björck, S., S. Olsson, C. Ellis-Evans, H. Håkansson, O. Humlum & J. M. de Lirio, 1996. Late Holocene palaeoclimatic records from lake sediments on James Ross Island, Antarctica. Palaeogeogr. Palaeoclim. Palaeoecol. 121: 195–220.Google Scholar
  10. Church, M. & J. M. Ryder, 1972. Paraglacial sedimentation: A consideration of fluvial processes conditioned by glaciation. Geol. Soc. Am. Bull. 83: 3059–3072.Google Scholar
  11. Cleveland, W. S., 1979. Robust locally-weighted regression and smoothing scatterplots. J. Am. Statist. Assoc. 74: 829–836.Google Scholar
  12. Cooper, D. W., 1968. The significance level in multiple tests made simultaneously. Heredity 23: 614–617.Google Scholar
  13. Dean, W. E. Jr., 1974. Determination of carbonate and organic matter in calcareous sediment and sedimentary rock by loss on ignition: comparison with other methods. J. Sed. Petrol. 44: 241–248.Google Scholar
  14. Desloges, J. R., 1994. Varve deposition and the sediment yield record at three small lakes of the southern Canadian Cordillera. Artc. Alp. Res. 26: 130–140.Google Scholar
  15. Ellis-Evans, J. C., 1990. Evidence for change in the chemistry of maritime Antarctic Heywood Lake. In Kerry K. R. & G. Hempel (eds), Antarctic Ecosystems-Ecological Change and Conservation, Proc. 5th SCAR Symposium on Antarctic Biology. Springer-Verlag, Berlin, pp. 77–82.Google Scholar
  16. Engstrom, D. R. & H. E. Wright Jr., 1984. Chemical stratigraphy of lake sediments as a record of environmental change. In Haworth E. Y. & J. W. G. Lund (eds), Lake sediments and environmental history. Studies in palaeolimnology and Palaeoecology in honour of Winifred Tutin. Leicester University Press, pp. 11–67.Google Scholar
  17. Fenton, J. H. C., 1982. Vegetation re-exposed after burial by ice and its relationship to changing climate in the South Orkney Islands. Br. Ant. Surv. Bull. 51: 247–255.Google Scholar
  18. Gardiner, M. J., 1999. Snowmelt modelling in Paternoster Valley, Signy Island, Antarctica. PhD Thesis, University of Bristol: 295 pp.Google Scholar
  19. Glew, J. R., 1991. Miniature gravity corer for recovering short sediment cores. J. Paleolim 5: 285–287.Google Scholar
  20. Gordon, J. E. & R. J. Timmis, 1992. Glacier fluctuations on South Georgia during the early 1970s and early 1980s. Antarctic Sci. 4: 215–226.Google Scholar
  21. Håkanson, L. & M. Jansson, 1983. Principles of lake sedimentology. Springer-Verlag, Berlin Heidelberg, pp. 316.Google Scholar
  22. Hardy, D. R., R. S. Bradley & B. Zolitschka, 1996. The climatic signal in varved sediments from Lake C2, northern Ellesmere Island, Canada. J. Palaeolim. 16: 227–238.Google Scholar
  23. Heywood, R. B., 1967. Ecology of the freshwater lakes of Signy Island, South Orkney Islands: I. Catchment areas, drainage systems and lake morphology. Brit. Ant. Surv. Bull. 14: 25–43.Google Scholar
  24. Heywood, R. B., H. J. G. Dartnall & J. Priddle, 1979. The freshwater lakes of Signy Island, South Orkney Islands, Antarctica. British Antarctic Survey Data 3, pp. 46.Google Scholar
  25. Heywood, R. B., H. J. G. Dartnall & J. Priddle, 1980. Characteristics and classification of the lakes of Signy Island, South Orkney Islands, Antarctica. Freshwat. Biol. 10: 47–59.Google Scholar
  26. Hodgson, D. A., N. M. Johnston, A. P. Caulkett & V. J. Jones, 1998. Palaeolimnology of Antarctic fur seal Arctocephalus gazella populations and implications for Antarctic management. Biol. Cons. 83: 145–154.Google Scholar
  27. Holdgate, M. W., 1964. Terrestrial ecology in the Maritime Antarctic. In Carrick, R., M. W. Holdgate & J. Provost (eds), Biologie Antarctique. Hermann, Paris, pp. 181–194.Google Scholar
  28. Jones, P. D., S. C. B. Raper & T. M. L. Wigley, 1986. Southern Hemisphere surface air temperature variations: 1851–1984. J. Clim. Appl. Meteorol. 25: 1213–1230.Google Scholar
  29. Jones, V. J., 1993. The use of diatoms in lake sediments to investigate environmental history in the Maritime Antarctic: an example from Sombre Lake, Signy Island. Antarctic Special Topic, 91–95.Google Scholar
  30. Jones, V. J. & S. Juggins, 1995. The construction of a diatombased chlorophyll-a transfer function and its application at three lakes on Signy Island (maritime Antarctic) subject to differing degrees of nutrient enrichment. Freshwat. Biol. 34: 433–445.Google Scholar
  31. Jones, V. J., D. A. Hodgson & A. Chepstow-Lusty, 2000. Palaeolimnological evidence for marked Holocene environmental changes on Signy Island, Antarctica. The Holocene 10: 43–60.Google Scholar
  32. Juggins, S., 1994. Program MAT-Modern Analog Technique, Version 1.0, Department of Geography, University of Newcastle, Newcastle-upon-Tyne, NE1 7RH, UK.Google Scholar
  33. Juggins, S., R. W. Battarbee & S. C. Fritz, 1994. Diatom/salinity transfer functions and climate change: an assessment of methods and application to two Holocene sequences from the northern Great Plains, North America. In Funnell, B. M. & R. L. F. Kay (eds), Palaeoclimate of the Last Glacial/ Interglacial Cycle. Special Publication 94/2 of the NERC Earth Sciences Directorate, pp. 37–41.Google Scholar
  34. Juggins, S. & C. J. F. ter Braak, 1996. CALIBRATE Version 0.61 (Beta Test)-A Computer Program for Species-Environmental Calibration by [Weighted-Average] Partial Least Squares Regression. ECRC, University College London, UK.Google Scholar
  35. Karlén, W., 1981. Lacustrine sediment studies. A technique to obtain a continuous record of Holocene glacier variations. Geog. Annal. 63A: 273–279.Google Scholar
  36. Karlén, W. & J. A. Matthews, 1992. Reconstructing Holocene glacier variations from glacial lake sediments: studies from Nordvestlandet and Jostedalsbreen-Jotunheimen, southern Norway. Geog. Annal. 74A: 327–347.Google Scholar
  37. Korsman, T. & H. J. B. Birks, 1996. Diatom-based water chemistry reconstructions from northern Sweden: a comparison of reconstruction techniques. J. Palaeolim. 15: 65–77.Google Scholar
  38. Krausse, G. L., C. L. Schelske & C. O. Davis, 1983. Comparison of three wet-alkaline methods of digestion of biogenic silica in water. Freshwat. Biol. 13: 73–81.Google Scholar
  39. Leeman, A. & F. Niessen, 1994a. Varve formation and the climatic record in an Alpine proglacial lake: calibrating annually laminated sediments against hydrological and meteorological data. The Holocene 4: 1–8.Google Scholar
  40. Leeman, A. & F. Niessen, 1994b. Holocene glacial activity and climatic variations in the Swiss Alps: reconstructing a continuous record from proglacial lake sediments. The Holocene 4: 259–268.Google Scholar
  41. Lemmen, D. S., R. Gilbert, J. P. Smol & R. I. Hall, 1988. Holocene sedimentation in glacial Tasikutaaq Lake, Baffin Island. Can. J. Earth. Sci. 25: 810–823.Google Scholar
  42. Leonard, E. M., 1985. Glaciological and climatic controls on lake sedimentation, Canadian Rocky Mountains. Zeitschrift für Gletcherkunde und Glazialgeologie 21: 35–42.Google Scholar
  43. Leonard, E. M., 1986. Varve studies at Hector Lake, Alberta, Canada, and the relationship between glacial activity and sedimentation. Quat. Res. 25: 199–214.Google Scholar
  44. Martinez-Macchiavello, J. C., A. Tatur, S. Servant-Vildary & R. del Valle, 1996. Holocene environmental change in a marine-estuarine-lacustrine sediment sequence, King George Island, South Shetland Islands. Ant. Sci. 8: 313–322.Google Scholar
  45. Mackereth, F. J. H., 1966. Some chemical observations on post-glacial lake sediments. Phil. Trans. R. Soc. Lond. B 250: 165–213.Google Scholar
  46. Mäusbacher, R., J. Müller & R. Schmidt, 1989. Evolution of postglacial sedimentation in Antarctic lakes (King George Island). Z. Geomorph. N.F. 33: 219–234.Google Scholar
  47. Nesje, A., S. O. Dahl, R. Lovlie & J. R. Sulebak, 1994. Holocene glacier activity at the southwestern part of Hardangerjokulen, central-southern Norway: evidence from lacustrine sediments. The Holocene 4: 377–382.Google Scholar
  48. Noon, P. E., 1997. Recent environmental change at Signy Island, maritime Antarctic: quantitative lake-sediment studies as a basis for reconstructing catchment ice-cover. PhD Thesis, University of London, 460 pp.Google Scholar
  49. Oerlemans, J., 1989. On the response of valley glaciers to climatic change. In Oerlemans, J. (ed.), Glacier fluctuations and climatic change. Kluwer Academic Publishers, pp. 353–371.Google Scholar
  50. Oldfield, F., 1977. Lakes and their drainage basins as units of sediment-based ecological study. Prog. Phys. Geogr. 1: 460–504.Google Scholar
  51. Oppenheim, D. R. & J. C. Ellis-Evans, 1989. Depth-related changes in benthic diatom assemblages of a maritime Antarctic lake. Polar Biol. 9: 525–532.Google Scholar
  52. Overpeck, J. T., T. Webb & I. C. Prentice, 1985. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quat. Res. 23: 87–103.Google Scholar
  53. Priddle, J. & H. J. Belcher, 1982. An annotated list of benthic algae (excluding diatoms) from freshwater lakes on Signy Island. Brit. Ant. Surv. Bull. 57: 41–53.Google Scholar
  54. Raper, S. C. B., T. M. L. Wigley, P. R. Mayer, P. D. Jones & M. J. Salinger, 1984. Variations in surface air temperatures. Part 3: the Antarctic, 1957–1982. Monthly Weather Rev. 112: 1341–1353.Google Scholar
  55. Smith, R. I. L., 1988. Destruction of Antarctic terrestrial ecosystems by a rapidly increasing fur seal population. Biol. Cons. 45: 55–72.Google Scholar
  56. Smith, R. I. L., 1990. Signy Island as a paradigm of biological and environmental change in Antarctic terrestrial ecosystems. In Kerry K. R., & G. Hempel (eds), Antarctic ecosystems-Ecological Change and Conservation. Proc. 5th SCAR Symposium on Antarctic Biology, Springer-Verlag, Berlin, pp. 30–48.Google Scholar
  57. Smol, J. P., I. R. Walker & P. R. Leavitt, 1991. IV. Palaeolimnology. Palaeolimnology and hindcasting climatic trends. Verh. Internat. Verein. Limnol. 24: 1240–1246.Google Scholar
  58. Smol, J. P. & M. S. V. Douglas, 1996. Long-term monitoring in Arctic lakes and ponds using diatoms and other biological indicators. Geoscience Canada 23: 225–230.Google Scholar
  59. ter Braak, C. J. F., 1988. CANOCO-a FORTRAN program for canonical community ordination by [partial] [detrended][canonical] correspondance analysis, principal components analysis and redundancy analysis (version 2.1). Technical Report LWA–88–02. Agricultural Mathematics Group, Wageningen.Google Scholar
  60. ter Braak, C. J. F., 1990. Update notes: CANOCO version 3.10. Agricultural Mathematics Group, Wageningen.Google Scholar
  61. ter Braak, C. J. F., 1995. Non-linear methods for multivariate statistical calibration and their use in palaeoecology: a comparison of inverse (K-nearest neighbours, partial least squares and weighted averaging partial least squares) and classical approaches. Chemometr. Intell. Lab. Syst. 28: 165–180.Google Scholar
  62. ter Braak, C. J. F. & S. Juggins, 1993. Weighted-averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270: 485–502.Google Scholar
  63. Thompson, R. & F. Oldfield, 1986. In Environmental magnetism. Allen & Unwin, London, 227 pp.Google Scholar
  64. Wasell, A. & H. Håkansson, 1992. Diatom stratigraphy in a lake on Horseshoe Island, Antarctica: a marine-brackishfreshwater transition with comments on the systematics and ecology of the most common diatoms. Diat. Res. 7: 157–194.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • P.E. Noon
    • 1
    • 2
  • H.J.B. Birks
    • 3
    • 2
  • V.J. Jones
    • 2
  • J.C. Ellis-Evans
    • 1
  1. 1.British Antarctic Survey, High CrossCambridgeUK
  2. 2.Environmental Change Research CentreUniversity College LondonLondonUK
  3. 3.Botanical InstituteUniversity of BergenBergenNorway

Personalised recommendations